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Preface

A Different Way of Learning

This is not a typical algebra textbook. There will be no rules or meaningless
formulas to memorize, no lengthy practice of mysterious techniques.

As you use this book, you will understand algebra instead of memorizing
it. This understanding will be a challenge but it will also be enjoyable; the
knowledge will last your whole lifetime instead of a few weeks or years.

Understanding Instead of Memorizing

Pick a word that you know. Does the word represent something you have
touched or experienced? If you look at a word like “banana” or “computer”
you cannot help visualizing an object, for language is easy to learn because it
means something.

Mathematics can be difficult to learn because it is often taught with no
recognizable meaning. Do you visualize anything at all when you see 2x, 2,
or % - ¥%? Do you know what these symbols mean? Because we may not
know what the symbols stand for, learning mathematics can be like attempt-
ing to memorize a long nonsense poem—a poem that does not even rhyme.
Memorizing mathematics is similar to attempting to learn how to read
without knowing what the words mean.

3x+2=236

3 —6x+2 exponent
square root

3X(4X— 2) 6+5=12

Word Prob-

2
7X + 6x
lems

Rules %

%o X

Algebra is a language, and as with Spanish, English, or Hebrew, groups
of symbols have specific meanings. In algebra each symbol can be repre-
sented by a physical object; each rule is something true about all these
objects; each formula or technique is just a way of discovering something
about a certain group of objects.
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Mathematics and Symbols

Working with objects instead of abstract symbols makes many topics of
algebra very easy; once the objects have been named using algebraic sym-
bols, the symbol manipulations become as easy and obvious as the manipu-
lations of the objects. Learning algebra takes on the quality of learning a
clever board game.

Memorization is almost never necessary because the rules make such
perfect sense. (For example: “When counting, all pieces of the same size and
shape get counted together.”) Exercises involve a process of discovery; it is
usually obvious to each student when a successful answer is found. (For
example: “Arrange all of these pieces to form a single rectangle.”) Flip-Chip
Algebra can be learned by virtually anyone who knows the multiplication
tables (and it can help in learning those tables); once the algebra is learned
it will not be easily confused or forgotten.

A note to people who have difficulty with mathematics

If you have not been successful in learning algebra when it has been taught
with traditional methods, then this book is for you. If you have not enjoyed
algebra in the past, it may be that you have either been unable or unmoti-
vated to memorize a large amount of meaningless information.

You have learned a great many other meaningful things in your life—
reading, history, music—and many were not difficult. When we give alge-
bra meaning, you will learn it in the same natural way.

This change may be difficult because we are asking you to give up the
only crutch you may think you have—rote memory—and encouraging you
to take the risk of believing that you will be able to understand the material
without memorizing it. We know that you will be successful.

Steven Kant
Frank Edge
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Learning By Discovery

Purpose of this chapter

This chapter is a short introduction to the methods of the book. Three
demonstrations will be presented. Each of these concepts will be covered in
detail in a later chapter, so it is not important to try to memorize or practice
these examples; instead you need only follow the demonstrations and enjoy
the challenge of solving the problems. Your job is to understand, not to obey.
For the demonstrations, you will need the cardboard chips and a pencil
and paper. As in the rest of the book, you will learn more if you follow along
with the text by doing the work instead of merely reading or watching.

Demonstration 1: Solving Equations

Count out 26 of the small cardboard chips. Remove 5 chips and set them
aside. Take the remaining chips and stack them up in three equal piles. Do
not count the piles; you can tell if they are equal by feeling that each pile is the same
height.

Here is what you should have:

L7
LT
LJLy

Place the three stacks and the five extra chips on a piece of paper and write
an equals sign and the number 26. You have now made a statement that

3 stacks + 5 =26

4 Chapter 1: INTRODUCTION



Now, without counting the stacks, can you figure out how many chips are in
each stack? It is not usually difficult; most people do something like this: g

|
AN
N
N
N
N
~

If the three stacks plus five are a total of 26 chips, then the three stacks alone
must be 26 minus 5 or 21. If three equal stacks total 21, then each must be 21
divided by 3, or 7. Count a stack, and you will find that you were correct.

Demonstrations 5



With algebra symbols, this is how you would do it:

— %gggg
= - == 3x+5 = 26
Ly _5 _5

LTl —— 3x =21

= = £T L5 £ 3x 21
LY L7 L — = —
L&Y L&y LAy 3 3
(L7 L&y L&

(7

2 &7

= = &
e x =7
ey
e

As you can see, the x stands for the number of chips in a stack and 3x
stands for the number in three stacks. In this book, the symbols you use will
stand for something real; the algebra techniques will generally be shown as a
movement of chips rather than just a manipulation of symbols.

You have just solved a linear equation in one variable. As you progress
through this book, you will find that most of algebra is this easy; you may
also find, as you did here, that you know many of the concepts already.

Demonstration 2: Factoring

The mysterious art of factoring is usually thought to require lengthy prac-
tice and repetition. Here you will do it painlessly in a few minutes.

For this exercise, you will need:
e 1large square
e 7 long bars

e 12 small squares

6 Chapter 1: INTRODUCTION



First we will do a preparatory exercise. Take the 12 small squares and
arrange them into a rectangle. There are several possibilities:

We call this factoring. When we take 12 and arrange it as 2 groups of 6, we
say that

12 =2-6
The other possibilities are:

12 =3-4

12 =1-12

Factoring is making rectangles.

Now we will do the main exercise using all of the chips listed above. Your
job is to rearrange these chips into a rectangle. Here are the rules of the
game:

¢ You must make a smooth rectangle. No holes or projecting chips
are allowed. A square is considered to be a type of rectangle.

No

e The small squares will only match with the end of the bars. They
will not fit along the side of the large square or on the long side of
the bars.

Yes No

Try it now. If you get stuck, keep moving the pieces around until you see
the answer. Our solution is on the following page (yours may be slightly
different):
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However your rectangle is formed, it will have a bar and three chips along
one edge, and a bar and four chips along the other edge.

In the language of algebra, the small squares stand for 1, the bars stand
for x, and the large squares stand for x* (read as “x squared”). Because the
finished rectangle has a length of one bar plus three dhips and a width of one bar
plus four chips, we say that:

P +7x+12 = (x +4)-(x + 3)

You havejust factored a quadratic expression.

Demonstration 3: Dividing Fractions

Without writing anything down, can you quickly answer this question:

8 =+ =7

| =

Do not work out the answer using any rules.
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Typical answers are 2,12, 32, and “I don’t know.” If you can recall the rules
of arithmetic, you would probably do it this way:

1 4 32
STZ—8~T—T—32
Invert (Why?) Multiply

What does this mean? Let’s pose this question another way:

How many quarters are in $8.00?

Since there are 4 quarters in 1 dollar, there are 4 - 8 or 32 quarters in 8 dollars.
Was this second problem much easier than the first? Yes, because it meant
something very real. In fact, most people are able to do it even if they do not

remember rules about dividing fractions.

Now we will do the problem with chips. If we decide that 4 chips together
are one whole unit, then each chip is V. Set up 8 whole units like this:

8 wholes

You can see that there are 8 groups of 4 or 8 -4 =32 quarters.

Demonstrations 9
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Summary

Here are some of the important lessons of this chapter:

e The symbols of arithmetic and algebra can stand for real objects.
¢ We already know many of the concepts of algebra.
e The best way to learn algebra is to understand the meaning of the

symbols, techniques, and properties. Understanding algebra is
more enjoyable and more efficient than memorizing a list of rules.

Exercises

10

Use the chips to solve these problems:

Solving equations: Set up stacks and determine how many chips

are in a stack. Remember that x is a stack.

1. 4x+2=26 (Use 26 chips)
2. 2x+9=19
3. 7x+6=34

Factoring: Make the chips into a rectangle.

4. x*+8x+12
5. x*+8x+15

6. 2x°+5x+2 (2x* means two large squares)

Dividing fractions: Show the answer with the chips.

7 6+%
8 4+%
9 4+%
10. 12+%
11. 3+%
12. 2+%

Chapter 1: INTRODUCTION
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Section 1
Positive and Negative Numbers

The Meaning of Positive and Negative Numbers

Imagine a slab with a square section removed:
+1

Positive one (1) is the square chip that is cut out of the slab. Negative one
(-1) is the hole that it came out of.

Add *1 and -1 back together and you fill in the hole; zero is your result:

For practical purposes, it is more convenient to use two chips of different
colors to represent *1 and -1. When they are added together, they cancel
each other out, leaving zero.

12 Chapter 2: POSITIVE AND NEGATIVE NUMBERS



Signed Numbers and Flip-Chips™

Anumber with a sign (+ or -) directly to its left (in front of the number when

reading from left to right) is called a signed number. The positive (+) or
negative (-) sign tells what color chips the number represents and the num-
ber tells how many of these chips are represented. Together, all of the positive
and negative numbers are called integers.

With a piece of material which has a different color on each side it is
possible to make a Flip-Chip—a piece which represents +1 with one side
up, and -1 with the other side up. Flipping the chip changes the sign!

The chips we use are colored on one side and white on the other side, so
we call the colored side positive or plus (+) and the white side negative or
minus (-). This way we always know which side is which.

Flipping the chip changes the sign!

" - —r

2 A, //\6\/ o

W 7 7 4 7 s

And a second negative sign flips the chip again!:

N N
Ay i Ay

+1 -1 (1) = +1

Section 1: Positive and Negative Numbers 13



Double or Multiple Signs

A number may be shown having more than one sign in front (to the left) of

it. These signs can be written in several ways; parentheses are often used to
enclose the number and one sign:

*(3)
(72)
+(+5)
*(4)

Thinking of these numbers as chips, remember that each negative (-) sign
in front of a number flips the chips one time, so two minus signs flip the
chips twice, giving a positive (+) side up. We always begin with the colored
(+) side up before we start flipping. Here is the result of four different
combinations of signs:

+H(+3) = +3
+(-3) = -3
-(+3) = -3
-(-3) = 3

Each negative sign means to flip the chips once; each positive sign means to
leave them alone. We always start with the colored (positive) side up.

Cancelling of Positives and Negatives

The basic principle of grouping positive and negative chips together is that
one positive chip grouped with one negative chip cancels to give zero. This
means that if we put an equal number of positive and negative chips
together, they will cancel to give zero:

7 L7 £ £
/S ES LTS

19554
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+7 cancels -7

Symbols and Signs

We have been using several symbols that may be unfamiliar. First we have
been showing positive and negative numbers with small plus or minus
signs that are on the left of the number and raised up slightly.

Raised signs

-3 *5

Positive numbers can be shown with or without the positive sign. The
familiar number 4 and the new symbol +4 have the same meaning;:

4 = *4

Plus (+) sign
is optional

Although a positive sign is optional, a negative number must always be
shown with a minus sign so that we can tell that it is negative.

Section 1: Positive and Negative Numbers 15




Exercises

16

Use the chips to illustrate the following results:

Example: 5and -5 cancel to 0

Solution:

Fo oo B

Example: -(-4) = +4

Solution:

LT (T LJLT
LJL) L 7 LJET

Start with 4 Flip to 4 Flip again, to -(4) = +4

“(7) = +7
-(+3) = -3
(1) =
(+3) =
+(-9) =
-(-10) =
-(3) = -3

3 and -3 cancel to 0

©° ® NS m kDN

6 and -6 cancel to 0

-6 and ~(-6) cancel to 0
-(11) and *11 cancel to 0
-(-17) =

+(-0) =

“(0) =

T i
=W bR o

Chapter 2: POSITIVE AND NEGATIVE NUMBERS



Section 2
Addition of Signed Numbers

The Meaning of Addition

In the past, adding two numbers meant that we took two amounts and
combined them. Now that we have invented positive and negative num-
bers, addition will still have the same basic meaning, as long as we under-
stand the idea that equal groups of positive and negative chips cancel each
other out.

Adding Two Positives

If we are adding two positive numbers, we simply combine two groups of
positive chips to give one larger group of all positive chips:

LT gy L gL 7L 747

j (+3) + (+4) = 7

L T LA

Adding Negatives

To add negative numbers, we combine the groups of negative chips. For
example:

(2) + (5)

This expression means that we should take 2 negative chips and 5 negative
chips and group them together. The result is clearly 7 negative chips:

A/ S G S/ S Sy Sy S

L (-2) + (-5) = -7

VA Sy S/ Sy Sy S/

Section 2: Addition of Signed Numbers 17



As we can see from the last two examples, adding numbers with the same
PR sign is very easy—we simply combine the chips and count the total number:

(+6) + (+3) = +9

(+12) + (+3) = +15

(3)+(5) =8

(-6) + (-4) = -10

The parentheses shown above are not required but can be helpful. We use
them to separate the number from the addition sign; if you leave them out,
make sure to keep the negative signs raised and close to the numbers:

6+-4 = -10

Adding Negative and Positive Numbers

If we need to add a negative number and a positive number, we combine
the two groups of chips and cancel out pairs of negatives and positives:

-2

S ey -
|

i ) Lt U Y
|

3
(2)+ () =3 LT L0 7

Did you notice that there were more positives than negatives? Because of
this, when the cancelling is done, we are left with positives.

18 Chapter 2: POSITIVE AND NEGATIVE NUMBERS



Here is an example of adding a positive number and a negative number

where there are more negative chips: a7 L

+ -7

3
LJELJ) L gL 7L T

T - VT

(3)+(7) = 4 Y S & &

As you would expect, the positive chips cancelled out some of the negatives,
but there are still negatives remaining.

Summary

To add two numbers, we combine the chips, cancelling if we have a mixed
group of positives and negatives:

¢ Adding two positives—Combine the groups of chips for a total of
more positives.

¢ Adding two negatives—Combine the groups of chips for a total of
more negatives.

¢ Adding a positive and a negative—Combine the groups of chips
and let positive and negative chips cancel out in pairs. The chips
which remain will have the same color (sign) as the larger original

group.

Section 2: Addition of Signed Numbers 19



Exercises

Use your chips to set up and solve the following addition prob-

lems:

(*5) + (*5) =
(*3) + (*11) =
(5) + (1) =
(3) +(73) =
(D +(1) =
(+8) + (+4) =
(4) +(73) =
((3) +(4) =
(6) + (7) =
(t12) + (1) =
(*7) + (*6) =
(+7) + (6) =
(F11) + (+2) =
11+ (2) =
4+-5 =
4+5 =
1+(2) =
1+ (3) =
1+3 =
2+°3 =
7+°5 =
B3+5 =
3+5 =
6+2 =

6+ (2) =
6+2 =

6+ (2) =
4+5 =
4+-5 =
4+5 =

A A A I A

W N N N N N N N N NN = = e e el el el d d
S® PN AR PR SO ®IST R DN RO
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Section 3
Subtraction of Signed Numbers

The Meaning of Subtraction

We were able to easily extend our old idea of addition to cover signed
numbers, but we will have to do a little more work to invent a new
definition of subtraction. By subtraction, we have always meant the concept
of taking away part of what we have. For example:

7-3

With the chips, this means that we start with 7 chips and then take away 3
chips. The result is 4:

7
><] 7-3
7-3 =4
This standard idea of subtraction will also work well with the following
example:
(7)-(3)

We start with 7 negative chips and take away 3 negative chips:

-7

g (*7)-(3)

(7)-(-3) = 4

Section 3: Subtraction of Signed Numbers 21



Although these examples work well with our idea of “taking away,” sub-
S traction is not always that easy. What if we are asked to subtract more chips

fffff than we start with?

5-7
3-18
9-10

(*5) - (6)
(2)-(8)
Our system of subtraction needs to make sense when given these types of

problems. We also need to know what to do if we start with one color chips,
but we are asked to take away or subtract the other color of chips:

3-(2)
45
0 (-6)

The old idea of “take away” is clearly not going to work for subtraction of
signed numbers.

Subtraction of Signed Numbers: Method |

Our first new method of doing subtraction will be very simple—in a given
expression, each number will tell us how many chips are in one group, and
the sign in front (to the left) of each number will tell us what color chips are
in that group. We will then add the groups together. If the chips are different
colors, let them cancel in pairs.

3-4

+3 (3 colored chips) -4 (4 white chips)

Instead of subtraction, we think of the problem as adding groups of chips
which are sometimes different colors. Look at each number and the sign to
its left. Since 3 has no sign, it is positive; since 4 has a minus sign (-) it is
negative. In this situation, the subtraction sign is considered to be the same as a
negative sign.

22 Chapter 2: POSITIVE AND NEGATIVE NUMBERS



When we add 3 and 4, the result is -1:

3 -4

Here is another example:

-3 -4

We think of the problem as starting with -3 and adding -4:

The result is -7.

Section 3: Subtraction of Signed Numbers 23
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Subtraction and Double Signs: Method |

If two signs appear next to each other with no number in between, think of

them as double signs. Flip the chips for each negative or subtraction sign. If
there are two negative signs, we flip the chips twice and the result is
positive. We then add: For example:

53— (-4)

3 -(-4) = +4

This gives:

3-(4) =3+4=7

Summary: Method |

To add or subtract:
e Identify each number as positive or negative by the sign in front
of it. Choose the correct color chips for each group, then add the

groups together.

e If there are double signs in front of any number, flip that group of
chips the proper number of times, then add the groups together.

e Think of all addition and subtraction as addition.

Subtraction: Method Il

We will now look at another way of subtracting. Method Il is very much like
Method I; you should use whatever method is most comfortable. It is best
to understand both methods—they are simply two different ways to illus-
trate the same idea.

First, let’s look at some examples of adding and subtracting where two
different problems have the same answer:
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In the diagram below, you can see that adding -3 is the same as subtracting 3:a

A J = ...

4-3 = 4+(3)
4 4
4-3 ¢><\ \\ - / -
] ~ - 4+ (73)
- ~ /X\
/ [ \\
1 1
We can see that the following two examples also have the same result:
4-(3) =-1
4+ (+3) = -1
The diagram shows why this is true:
4-(8) = -4+(+3)
-4 -4
-4 (-3) < \\ //
- ~ S -4 + (+3)
/ // \\\
1 1
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We can see that:

e Subtracting a positive number is the same as adding a negative
number.

e Subtracting a negative number is the same as adding a positive
number.

e In general, subtracting any number is the same as adding its
opposite.

4-3 = 4+(3)

4-(38)=4+(3) = 4+3

Here are some examples of how to use Method II with subtraction:

7-2=7+(2) =5
8-(3)=8+(3) = 11
6-3 = 6+(3) =9

With the chips, we set up a subtraction with Method Il by taking out the two
groups of chips indicated. We than flip the subtracted group of chips and
combine the two groups. Here are three examples:

(3)- @) —

(tlip)

3+(4) > >
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— (-3) - (4)
(3)+(4) =7
3-(4) =7
o (3) - (-4)

B)+((+4) =7

Summary: Method Il

To subtract (2 and b stand for any numbers):
e a-b=a+(b)
e a-(b) = a+(+b)

e Tosubtract any number of chips, flip the subtracted chips and add.
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Summary: Method | and Method Il

We have looked at two methods for doing subtraction. With both methods,

we think of subtraction as adding. With Method I, we just look at the signs
in front of each number to see what color chips to add; with Method II, we
look at every subtraction as adding the opposite.

To Subtract:

Method I: Choose the color of chips by looking at
the signs in front of each number, then add.

Method II: Instead of subtracting the second
number, flip the chips and add the opposite.

Exercises

Use the chips to do the following subtractions:

LT ]
Example: 7 -4 DI::I

Solution: 3 ‘

N
[]

(Method I)

|
L]
[]

Example: (7) ~(4) EEniEEE

Solution: -3 _— l ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
K K

(Method II) l

L]
[]
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5-(3)
"5 - (+3)
5-(3)
6-(3)
3-5
3-(-5)
3-5

-3 - (-5)
0-(-17)
4-0

6 - (-0)
1-(1)
12 - (-5)
-12 - (-5)
-7-9

-7 - (-9)
44

-4 — (-4)
4 (-4)
-7-3

-7 - (-3)
7-3

7 - (-3)
5-2
-5 (-2)
2-5

-2 — (-5)
2-5

2 - (-5)
8 — (-4)

Section 3: Subtraction of Signed Numbers
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Section 4
Addition and Subtraction

Combining Addition and Subtraction

In a math sentence, if several signed numbers are written in a row with plus
or minus signs in between the numbers, the sentence means that we should
add the numbers by sliding the chips together and letting chips of different
colors cancel out. The simplified answer is given by the sign and number of
chips that are left when you're done. For example:

+3 -2 +1

3-2+1 Vay &y [ g Ay

JNRER

Vay & ,; [ /4%

e @@@ e

When you have three or more numbers together, we still think of them as
being added. When subtraction is indicated, you may want to rewrite it as
addition of the opposite kind of chips:

3-2+1=3+(2)+1

Then combine the chips to get the result. You can combine them in order
from left to right:

3+(2)+1
N/

1 + 1

N
2
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Or you can rearrange the chips to add up the positives and negatives
separately, and then cancel:

6-3-2+5
+(-3) + (-2

P

+(3) +(2)

5

p
S

ON— O
U1

+

+

T~

—_—

11 + 5

™
N

Summary

When we have to add and subtract more than 2 numbers in a row, we use
either method from the previous section and we consider all addition and
subtraction as combining groups of chips:

e Combine the numbers in pairs
e Or, rearrange all of the positive numbers in one group and the

negative numbers in another. Find the total negatives and total
positives, then combine the totals.

Exercises

Use the chips to find the answer and to illustrate the following problems:

Example: 5+2-3=-6

Solution:

-5 +2 -3
VA, Sy = A/ e
— ——

VA Sy S S/ S

1. +1-4+3=0
2. 2+1-4-=

3. *2+3-1-2=
4. +5-6-3-1=
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5. 2-7+5-1=
6. *t6+4+3+3=
“1+5-6+2=

Use chips to show the following:

8. *(3)=-3
9. -(2) = +2
10. +(+5) = +5

Use chips to do the following problems:

Example: -3+ (2) = 5

Solution:
-3 + 2 5
VA Ay —— LT

11. 2--2=0
12. +2--2 = *+4
13. -1-5=+4

14. -(2)+3 =
15. *(-5)-(-2) =
16. ~(*2)+6 =
17. 3--7 =
18. 3+5 =
19. 3+-5 =
20. 3+-°5 =
21. 3--5=
22, 6-2 =
23. 7--3 =
24, -7-3 =
25. 7-3 =

26. 7--3 =
27. 8+°6 =
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Section 5
Multiplication

The Meaning of Multiplication

To multiply the numbers 3 and 2 using chips, make a rectangle 3 chips long
and 2 chips wide, using six chips in all. We use a raised dot to indicate
multiplication:

3-2=6

Y

LT

This shows either 3 groups of 2, or 2 groups of 3.

Two groups of three

Three groups of two

L7
L7

Multiplying any two numbers using chips means making a rectangle of
chips with the numbers being the length and width. Multiplying is making
rectangles. The answer to the multiplication—the product—is the total num-
ber of chips in the rectangle.

Section 5: Multiplication 33



y /ey Length Width Total chips

3-2 =6
\

Times sign

Multiplying with Signed Numbers

When multiplying signed numbers using chips we will still make a rectan-
gle of chips, but we flip the chips once for each negative (-) sign used in the
multiplication. Remember that we start with colored side up.

(+3) (2)=6

(No Flips)

(*3)-(2)="6
x

(One Flip)

(3) (*2)="6
-
(One Flip)

((3)-(2)="6
~
(Two Flips)

Here are some more examples:

9.(-8) = -72 (1 flip)

6-3

-18 (1 flip)

("6) - (*3)

18 (2 flips)
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Here is how to use the chips for multiplying signed numbers:
-y 7 .
5.(3) = -15
3 LT G Ay Sy S Sy
ETETETEGey X TTTT 15 (1 flip)
EETEETEETEETUEET A S S S
5
-4-3 =-12
Ay ) -
A7 -12 (1flip)
V A S S
4
(:3)- (5) = +15
S ey A Sy S S S, A7 7 /L8785
A7/ A S S S S, A7 77788
V7 e A S S S S, L7777y
5

+15 (2 flips)
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We can now state the procedure for multiplying:

Multiplication of Two Numbers:

Make a rectangle with one number as the length
and the other as the width.

Flip all the chips once for each negative sign.

The area and the color give the result.

We can see that there is an obvious method for finding the sign of the answer
in a multiplication problem:

The Sign of the Result:

If one side of the rectangle is negative
and the other side is positive,
the rectangle is negative.

If both sides of the rectangle are positive,
or both sides are negative,
then the rectangle is positive.

Exercises

Use chips to perform the following multiplications:

Example: (-3)-(-4)= *+12

Solution:

L gL JL 7L
© TG
LT

4
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(3)(+3) = -9
(2)(5) = +10
(2)(+5) =
(+5):(+3) =
(4)(3) =
(+3)(-1) =
(2)(2) =
(2)(+2) =
4.7 =

. (D7) =
. (47
1.1 =
. 1-(1)

(1)(-1) =

. (D-(17) =
. ((1)(17) =
. (0)-(17) =
. (75)(6) =
. 3(2) =

(5)(-3) =
-4.3 =

. 2(7) =

2(7) =
2.(-7) =

. (6)(3) =

(6)3) =

. (06)(-3) =

-1-(-12) =
-3-(-3) =

. “5:(+5) =

Section 5: Multiplication
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Section 6
Division

The Meaning of Division

Division is often described as backwards multiplication. For example, if we
want to know:

12+4 =7

We usually think of this as:

“How many fours are in 12?”

Using chips, this is also the opposite of multiplication. Since multiplication
is making rectangles and counting the result, division also involves rectan-
gles. The problem above becomes:

“Take 12 unit chips and form a rectangle with side 4.
What is the other side?”

The other
Start with: Make one side: side is:
12+4 =3
The result is 3:
- i - 3
L L
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Division with Signed Numbers

If we have a division problem with one or two negative numbers, we
continue to think backwards:

12+4 =7
becomes
“What times 4 is equal to -12?”

The answer is -3 because -3 times 4 is ~12. To do this with chips, we start with
12 unit chips and build a rectangle that is 4 on one side. The other side is 3
units. Because the answer needs to be -12, we can see that the chips have
been flipped once, so the answer—the missing side—must be negative.

The result is -3:

! a
- |

- il

We can do other division problems in the same way. For example, what is:
12 + (-4)?

We start with 12 chips and build a rectangle with one side of -4. The given
side (-4) is negative and acoounts for one flip. To get back to an area of +12,
we need another flip, so the other side must be negative. The answer is -3.

The result is -3:
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Finally, how would we illustrate:

————— ' 12+ (-4)?

As we did above, we start with -12 chips and a side of -4 and then we can
see that the other side is 3. We flip the chips once for -4, giving the negative
sign that -12 requires, so the other side is positive 3.

The result is 3:
fffff fffff T T
- ***** Q o 3
SRR ] N

S | - 4 |

Division problems in algebra are most often written as fractions; instead of
writing

12+4 =3

we will commonly write

12

1= 3
You are probably aware that we can think of fractions as division problems
and we can rewrite division problems as fractions. When writing division
problems as fractions, we normally will reduce all fractions and we will
write “improper” fractions as mixed numbers.

For an explanation of why a division problem can be rewritten as a fraction,

please see Section 3 (Compound Fractions) of the FRACTIONS chapter.

Summary

Division is the opposite of multiplication. Since multiplication is making
rectangles, division is making rectangles in reverse:

The area: First side (divisor):  Other side (result):

12+-4 = 3
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Division: .

1. Start with unit chips (the area).
2. Build a rectangle with the divisor for the
first side.
3. How long is the other side?
4. The color of the area and the sign of the first side
will tell you the sign needed for the other side
(result).

Division: The Sign of the Result

1. If the area is positive:
Both sides are positive,
or both sides are negative.

2. If the area is negative:
One side is negative,
and the other side is positive.

Positive divided by Positive is Positive
Positive divided by Negative is  Negative
Negative divided by Positive is  Negative

Negative divided by Negative is Positive

Exercises

Complete the following division problems using the chips:

1. 12:(2)
2. -12+(+2)
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3. 12+ (-2)
4. 16+ (-8)

5. -16 = (-4)
6. 4+(4)
7. 4+(4)
8. 4+(4)
9. 1+(1)
10. -1+ (1)
11. 0+17
12. 0= (-17)
13. 14 = (-7)
14. -16 = (-2)
15. 18 +(-3)
16. -22 = (-11)
17. 20+ (-5)
18. 20+5
19. 20+-5
20. -5+(-5)

12
21. -3

15
22, 5

-14
23. A
2. 5

-20
25. 1

-20
26. =y

-24
27. 9

-24
28. 9

9
29. 6

-12
30. 5
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Section 7
The Number Line

Numbers as Distance

A number line is a useful method of representing positive and negative
numbers and their relationships. A number line is similar to a measuring
tape; distances from the end of the tape (zero) are marked out in equal
divisions along the tape. (Most measuring tapes use units of inches or
centimeters.)

| | | | | |
| | | | | |
0 1 2 3 4 5

The farther you move along the tape the higher the numbers get. Between
the whole numbers units are parts of units, marked off in fractions or
decimals.

185
1I7 | 1|8 | 1|9
11.2 cm
—I—'—'—'—'—'—'—'—H-I—'—'—'{—'—H—H-I—
10 11 12

Even between the closest marks on the measuring tape, we know that any
small fraction or decimal part of a unit could be represented if we used a
magnifying glass or a micrometer. In these ways a number line is again just
like a measuring tape.

A number line is different from a tape measure in that the number line
marks off both positive and negative distances from zero by defining one
direction as positive and the opposite direction as negative, with zero in the
middle.

Negative -
— Positive
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Generally, distances to the right of zero along the number line are called
positive, and distances to the left of zero are called negative. Notice from the
picture that the large, more positive numbers lie farther to the right, and the
more negative numbers lie farther to the left. Since negative numbers are
like being below zero or in the hole, we say that any number on the number
line is greater than (more positive than) any number lying to its left.

8 is greater than (more positive than) 3.
-2 is greater than (more positive than) -5.

A number line also differs from a measuring tape because the units on the
number line don’t actually represent distances like inches or centimeters.
The number line is made up of what are called pure numbers, which don’t
necessarily represent any lengths or objects, but are just numerical values.

Of course numerical values might be used to represent numbers of
objects, etc., but these representations are not necessary to use a number
line.

Adding on a Number Line

Positive numbers are represented on a number line as arrows pointing to
the right and having a length showing the number of units.

+4

Negative numbers are represented as arrows pointing to the left and also
having length equaling the number of units.

To add several numbers on the number line we represent each number as
an arrow. Beginning with the tail of the first arrow at zero, we place the tail
of each succeeding arrow at the tip-point of the previous arrow. The sum of
the numbers is the position on the number line of the tip of the final arrow.
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For example:

3+2-7
-7
+3 +2
7 6 5 4 -3 -1 0 1 2 3 4 5 6 7

The sum is -2. Another example:

5+3-2+7

+7

!

7 654321 ,12(3 456 7

The sum is +3.

Before adding on a number line, you must simplify all double negatives to
positives. The answers we get from adding on a number line will always be
exactly the same as the answers we get by adding positive and negative
chips; only the representation is different.

Exercises

Draw number lines and arrows to complete these additions. Cir-
cle the resulting sum. (Remember, the spaces between the units on

the number line must all be the same.)

3+5-2
2+4-6
3-2+4
2-(5-3

L S
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Make a number line and complete the following additions by

,,,,,,, counting with your pencil point. Start with your pencil point at

zero, and count steps to the right for each positive number and

steps to the left for each negative number added. Get your result

from the number line without drawing arrows.

2-5+3-1
3-5+2+1
7+41-5-3
2+5-6+1
4+3-(2)+(5)
10. 5-(3)+(2)-4

© ® N o w

For discussion:

11. If a tape measure is going to work, why must the separation of
all the units be the same?

12. How would you multiply using a number line?

46 Chapter 2: POSITIVE AND NEGATIVE NUMBERS



Chapter 3

Symbols and the
Order of Operations

SSiEs)




Section 1
Rules of Language

Symbols and Grammar

Algebra is a written language, and just like English or French, it has an
alphabet of symbols and a set of rules. (Unlike other languages, algebra is
usually written and seldom spoken). As we all know, written languages
have very specific rules for things like

e which direction to read

e where to start reading

e where to pause

e how to end one thought and begin a new thought
We call these rules grammar. In order to write and read effectively we must
all agree upon the rules of writing and reading, and upon the meaning of
the symbols that we use. With this agreement, the author knows what the
readers expect and the readers know what the author means to say.

The differences between symbols can be very subtle. For example, think
of the differences in meaning among these symbols in English:

Distinguishing Multiplication from Addition

We know the difference between adding two numbers and multiplying two
numbers:

Addition Multiplication

Vo v o v
| L7 7

. o
2 +5=-7

2:-3=6
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In the written language of algebra, the symbols that indicate adding or
multiplying can be quite confusing. There may be several different ways to
write the same statement. This is especially true when using signed num-
bers, since they all have positive or negative signs attached to them, even
when they are to be multiplied rather than added together:

(+3)-("5) + ("23)

Positive and Negative Signs

As you may have noticed, positive and negative signs are sometimes writ-
ten differently than addition and subtraction signs. While they have similar
meanings, the plus and minus signs of numbers will be shown raised up
and slightly smaller than addition and subtraction symbols:

Negative and Positive signs.
Smaller and raised.

3+3-6+ (16)
N

Addition and Subtraction Signs

Simple Addition

To indicate addition, we simply write signed numbers in a row with their
signs between them, as we have already shown.

5+2-1

The signs tell which color chips to add (colored for +, white for —) and the
numbers tell how many chips we have. We slide the chips together and let
the different colors cancel each other out, one for one; our answer (the sum)
is the number and color of chips remaining after the canceling is done.

The signs between the numbers tell us we are adding.

Notice that with signed numbers we often do not think of subtraction for
negative signs. We still add, but we add white chips instead of colored chips.
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Signs and Parentheses

When individual numbers are used, the positive and negative signs inside
of parentheses represent the type of number—positive or negative. Exposed
signs between numbers and outside of parentheses represent addition and
subtraction:

Enclosed sign means positive or negative

el M

t5_3 = +5—(*3) = (*5) + (-3)

Exposed sign means add or subtract

If there are double signs on some numbers, it is the exposed signs, those not
inside the parentheses, which tell us to add. You must of course carefully
use the properties of double signs to know if you should add white or
colored chips for each number.

Multiplication and the Dot

If a symbol is used to show multiplication, the symbol is a dot. For example,
two ways to show multiplication of +5 and -3 are

(+5)-("3) or *5:(3)

The dot means multiply.

(5)-(-3) = *5:(-3)

Dot means Multiply
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Notice that even when the dot (-) is used to indicate multiplication, the plus
or minus sign between the numbers is still enclosed in parentheses.

Missing Symbols: Multiplication

When two quantities are written next to each other without a sign between
them, the meaning is multiplication:

(*5)(-3) = *5(-3) = -15

No sign means multiply

This rule of no sign between means multiply works even if only one of the
numbers is in parentheses.

Missing Symbols: Addition

With signed numbers we assume that a number is positive (+) unless we see
a minus (-) sign. This means that when the plus (+) sign is not needed for
the understanding of a number statement, it can usually be left off.

For example, in addition there must be signs (+ or —) between the numbers
being added, but if the first number in a row is positive the plus sign can be
left off that number without confusion.

If the positive number is not the first number in a row, then the sign is
still necessary to show addition:

Can’t leave off negative sign (-)

\
5-3 = 3+5

Positive first number. Positive number, not first.

Leave off + sign. Must have + sign
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When multiplying, since no sign means multiply, a positive number can
{ [ ( ) ] } often be written without a sign:

5.(-3) = (-3)(5) = -15

The important thing to remember is that if you want numbers to be added
together, then there must be an exposed sign (+ or —) between the numbers.
If there is no exposed sign between two numbers, the expression means
multiply. A number with no sign in front (to the immediate left) of it is
understood to be positive.

Summary

Positive and negative signs may be shown raised and smaller than
addition and subtraction signs.

¢ The dot means multiply.
¢ Enclosed signs refer to the type of number (positive or negative).

¢ Exposed plus and minus signs and signs outside of parentheses
stand for addition and subtraction.

¢ No sign between numbers means multiplication.

¢  When the first number in a statement is positive, the positive sign
may be omitted. Negative signs are always required.

Exercises

Read the symbols carefully as you do these exercises:

5-3+6 =38
-3(-4) = 12
-2(t5) = —10
2+5 =
3-4 =
-5.(3) =
2-5 =

2(-5)
7-5 =
“7-5 =
-7(5) =
7-(5) =

© ® NS m kDN

[ G
N = o
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Section 2
Order of Operations

Number Statements

Number statements in algebra can be quite complex. Statements can have
many numbers, some of which are multiplied while others are added
together first and then multiplied. To deal with this variety, the language of
algebra has a set of rules which tells us which steps to do first and which to
do next.

These rules tell us in what order we do the different operations, so that
we all agree on the meaning and result of the statement. In English or
Spanish, an equivalent rule is that we always agree to read words from left
to right, starting at the top of the page and moving down line by line. If we
try to change the order of our reading, the statements don’t make sense.

But in some other languages, words are read from top to bottom starting
at the right edge of the page and moving to the left, column by column. In
these languages, you must also follow those rules of order for the statements
to make sense.

The first rule of order for algebra is that we always multiply (or divide)
before we add (or subtract). When you have a choice between multiplying
or adding, always multiply first and then add.

3+5-6 —— First, multiply 5 times 6
\/
CORRECT: 3+30 — Thenadd3
\ /
33

If you do the operations in the wrong order, you will get a different (and
incorrect) result:

3\ +5.6 -~ Adding first
8-6
\/

48 - Adifferent result

INCORRECT:
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You will notice that in algebra we do not always work from left to right.
Wherever we find multiplications in a number statement, we do these first,
and then we do the additions.

2(5) - 3(6) + 4 Multiply first
10-18+4 Then add
-4 The result

Writing each step below the one before can make the steps easier to follow.
It is also helpful to line up the related numbers below each other, as
illustrated above.

In summary, here is the order of operations that we have developed:

Order of Operations

1. Multiply or divide.
2. Add or subtract.
3. Finish the operations from left to right

Exercises

Complete the following exercises by simplifying to one number.
Use the chips so you don’t miss any steps. Remember, no sign be-

tween numbers means multiply.
Example:

3+4(2)-6
3+8-6
-1
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More examples:
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“2(-3) + 7(2)
+6 + 14
+20

3-2(-1) + 5(-5)
3+ 2 -25
-20

3(-4) + 5(3)

-5+ 3(3) —4(-2)
52)-3(2)+7
“4(-2) + 6 + 3(°1)
S5+3-7(2)+4
(4)(-3)("2) - (2)(3)("1)
1+23-2
4-3-2
3-2+4
1+2-3-4-5
12-4-3
12+4-3
3-12+3
12-4+3
2-3-4-5-6
-2(-3) + 5(2)
2-3(5)+2
-3(-4)-5

-3 —4(-5)
3-4-5

2(-5) — 3(-4)
2(-5)(-3) -4

2 -5(-3)(-4)
2-5(-3)-4
2-5(-3)-4
2-2(3)(4)

Section 2: Order of Operations
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Section 3

Parentheses ()

Using Parentheses

Even though the first rule in our “order of operations” says that we all agree
to multiply before we add, there are times when you might want to write a
number statement in which the first step has to be addition, with multipli-
cation coming later.

In the cases where a statement needs to say “add this first,” the language
of algebra uses special symbols called parentheses (). If a number statement
has parentheses with some operation inside them like (3 + 5), then the
parentheses () are a signal which says “do this step first.” For example,
watch how the following number statement is simplified:

-3(2) +5(7-3)-4 ———— Do () first
-3(2) +5(4) -4 ———— Now multiply
6+20-4 Now add

I/

First we do what is inside the ( ), then we multiply, and finally we add. So
now we have three rules of order:

The result

o First do any operations which are inside parentheses ().
¢ Second, when you have a choice, multiply before you add.
¢ Finally, work the remaining operations from left to right.

If there are both additions and multiplications inside of the parentheses,
then the “multiply first” rule still holds.
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For example:

3-2(5+2-4) —— Work inside parentheses ()
‘ Multiply first
3-2(5+8) Now add
3-2(13) —————— Outside (), multiply first
3-26 Now add
-23 The result

If the parentheses have only one number inside, there is no operation to do.
It is sometimes useful to set off one number with parentheses to show
multiplication or to show the effect of a positive or negative sign. Here are
some examples (each is separate from the others):

~(73)

(2)(3)

(2)(-3)

5-(6)

5-(6)3)

(*4)(+3)
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Here is how a statement is simplified if we use the chips to do one step at a
time:

3 - 24-3-2

- <EE

There is one final order of operations rule. Sometimes, for more complex
statements, it is necessary to have one set of parentheses inside of another
set of parentheses. Whenever this is required, a different type of symbol is
used for each pair of parentheses to avoid confusion:

First level: round Parentheses

Second level: square Brackets

()

— ]

Third level: curly Braces —

So a very complex number statement could have parentheses arranged like
this:

{43 + 16[9 - 6(2 + 5)] - 13}

Following the rule of “do what’s inside the parentheses first,” it makes sense
that inside the braces { } we do the bracket [ ] part first, and inside the
brackets [ ] we do the parentheses (') first.
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So our first rule becomes:

¢ Do the operations in the innermost parentheses first, and work
your way, step by step, to the outside.

The rules for order of operations can still be written as only three rules, with
both parentheses rules combined into one:

¢ Do the operations in the innermost parentheses first. Work your
way, step by step, to the outside.

¢ When you have a choice, multiply before you add.
¢ Work the remaining operations from left to right.

Watch how these rules work together:

Inner parentheses first. Multiply.

3-2[5+@-3-2)]

_————— Nowadd
3-2[5+@-6)]

{rLO 1}

__———————— Now move out and add
3-2[5+(-2)] .
Move out and multiply
3 —-2[3]
e Add
3-6
D — The result!
-3
Summary
Order of Operations

1. Do operations in the innermost parentheses first.
Work your way to the outside.

2. Inside parentheses or when there are no
parentheses:
Multiply or divide first.
Add or subtract next.
Finish the operations from left to right.
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Exercises

60

Perform the following operations. Work carefully, and remember to

do only one step at a time, while the rest of the steps wait. Examples:

-5 +2(3-4 — 6)
-5+ 2(12-6)
-5 +2(6)
5+ 12

7

32-52)-2(5+1)
3(2-10)-2(5+1)
3(—8) —2(6)
-24-12
-36

5-2[3 +4(2-3-3)]
5-2[3 +4(2-9)]
5-2[3 + 4(-7)]
5-2[3 - 28]
5-2[ -25 ]
5 + 50

55

Simplify to give one number:

2(4-23)+6-1
5+ 62) - 34

-4+ 3(2-52)

2(3 - 2+4) + 3(2 + 6)

4 +2[5-3(24 - 3)]
5-3+[2+(3-52)]

-4{-3 - 2[1 + (6 - 2:3)] - 1}
-1-3{-1-[2(-4-3) +2] -1}
(4-3)2-9(7-1)
(4+2){2-3[6-(D]}

PN o R NE

—
e
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Section 4
Division and Fractions

The Meaning of Fractions and Division

Most number statements in algebra do not use the sign for division (+).
Instead, division steps are usually written as fractions or ratios. For exam-
ple:

6+2 =

N[

See Section 3 of the FRACTIONS chapter for a more detailed discussion of
why this is true.

As with multiplications, steps involving division or the reducing of
fractions are done before steps involving addition. For example, follow
through the simplification of the following number statement:

3+4-2-12+3-1 -~ First multiply and divide
3 +8-4-1 Then add
6 The result!

As we stated above, this number statement would usually be written with
a fraction rather than with a division sign. First, simplify the fraction and do
the multiplication. Next add the results and the remaining numbers:

12 Multiplication and
3+4 \ 2- 3 1 fractions first
3 +8-4-1 —+——— Addnext
6 The result!

Section 4: Division and Fractions 61



{rLO 1}

If the top (numerator) and the bottom (denominator) of a fraction need
simplification before the fraction can be reduced, then this simplification
must be done first. For example:

-2.9 Multiply within fraction
4-3-6
18 / Now add
12-6

18 ————— Divide

6

-3

Since fractions must be simplified before they can be reduced, we can think
of fractions as understood to be within their own parentheses saying “do
me first.” Simplifying a statement having fractions would look like this:

2+7 Simplify fractions
and parentheses

6 - - 2\(_4) Divide and multiply
6 - 3 + 8 Add

Here is our final set of rules:
¢ Do the operations in the innermost parentheses first. (Fractions
have implied parentheses; they represent a division problem.)

Work your way step by step to the outside.

¢  When you have a choice, multiply or divide before you add or
subtract.

¢ Work the remaining operations from left to right.

¢ Do only one step at a time, leaving everything else unchanged.
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These rules are convenient agreements that we make to avoid confusion and
to simplify writing number statements. This is one of the few parts of
algebra that you must memorize; the rest of the properties and techniques
will be easy to understand without memorization.

Review the rules as you follow these examples:

8.(2) + [7— 5;4]

|

{rLO 1}

8-2 + (7-3)
8-2 + (4)
16 + 4
20
6-2-5
> +3
6-10
5 +3
—4
2
2+3
+1
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Here is a more complicated example. Remember to work only one small

{ [ ( ) ] } step at a time, while everything else waits.

2+4
5-5, ~22:5-8)
5254 on0-8)
6
6
5- 20— 20)
5- 1 - 4

A final example:

ot
o]

5-3[6-22 - 6)]

/

5-3[6 - 2(-4)]

\

5-3[6 + 8]

|

5-3[14]
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Exercises

Simplify:
6+4
1. T—B
2 ¥+6
4-2.7
3 6 + 5
4+10
4. -
3-2+1
7+5
a1
9.2
6 4—3[7—8]
7-2+1
7. - (2- 1
3.2 2341

8. 18—2[3”'6—4}

e
o s

Reviewexercises:

23+5)+1

2(3) +5(3-18)
3-2(5-1)
5-3(12-9)
7+2[3-(4-6)]

-3 +5(-4-2(8-3)]
2+[7-3(2-6)+2]

N g kR » bR
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8. (2+3)[4-53-1)]

{rLO 1}

9. @B-5I[3(2-7 +1]

10. (7 +2)[(3-4) -6]

5.2-1
3+6

11. ~(53-1)

12. 2(3”'6—4-2}—(0-17)

13. 2+ {—3—2[2+72'6+3H

14.

]
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Section 5
Absolute Value

The Size Of A Number

The size of a number (independent of its sign) has a special name in the
language of algebra. The size of a number is called its absolute value.

We indicate the absolute value of a number by putting a straight vertical
line on each side of the number. Thinking of the chips, the absolute value of
a group of chips is just the number of chips, independent of their color.

I51 =5 =51 =5

=31 =3 131 =3

The absolute value of a number is always positive. Notice that the bars | |
around a number indicate an operation to be done to that number. The bars
mean that we should make the number positive and rewrite it without the bars.

Operations Inside The Absolute Value Sign

If the absolute value bars are around an expression, and the expression has
several numbers and operations, perform the operations first, before taking
the absolute value.

13-71 = 1-41 =4
123-71 = 16-71 = 1-11 =1

When we say that the absolute value is always positive, this doesn’t mean
that we should turn all the signs inside that absolute value into plus signs.
Do the operations as they are indicated, and then take the absolute value of
the simplified number at the very end.

Absolute value is often used to describe the separation between two
points on the number line. This separation is obviously the difference
between the values of the points, but we generally want the separation to be
expressed as a positive number. This can be indicated using the absolute
value of the difference in the values of the points.

P 2

- -

|P1 - P2

---
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The separation between points P1 and P2 is | P1 — P2 1. Written in this way,
it does not matter which of the points has the larger value; the separation
between them will always be expressed as a positive number.

Here are two other examples:

The separation between P1 and P2 is

IP1-P2l = |-2-51 = -7 =7

The separation between Q1 and Q2 is
Q1 -Q2l = 1-1--41 = 131l =3

Altitude and temperature are other quantities where a difference is often
discussed as a positive number. For example, consider the statements:

“From the mountain top to the valley floor was 8,000 vertical feet.”
“The variation in the temperature during the experiment was 52°.”

In mathematical language these statements would be expressed using abso-
lute values.

Operations Outside The Absolute Value

If an absolute value is indicated as part of a larger expression, first simplify
inside the absolute value; then take the absolute value and put the result
inside parentheses ( ) within the larger expression. Finally, continue to
simplify the remaining expression.
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For example, consider the expressions below:

5-216-101 = 5-21-4|
= 5-2(4)
- 5-8
= -3

35-12-81 = 15— |- 6|
= 15— (6)
-9

Notice that a negative sign inside an absolute value is not directly affected
by the negative sign outside the absolute value. In simplifying the absolute
value, the negative sign on the outside is not used until the whole expres-
sion inside is simplified.

Absolute Value Signs Differ From Parentheses

The concept of the absolute value of a number is not difficult to understand,
but the notation for absolute value can sometimes be confusing because it
resembles parentheses or brackets.

Absolute value signs are different from parentheses and brackets in that
absolute value signs indicate an operation to be done to the number inside.
We never multiply across an absolute value sign; we must simplify and
remove the absolute value, putting its result inside parentheses, before
continuing with simplifying the rest of the expression.

For example:

{rLO 1}

3+-21-6+4l
CORRECT NOT CORRECT
3+-21-6+4l| 3+-21-6+4l|
Wrong: Do not multiply
Simplify 3, _-9|-9] 34+-21-2]| through absolute value signs!
absolute
value first\
3+-2(2) 3+ 1(-2)(-2)]
3+(4) 3+(4)
-1 7
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Exercises

{rLO 1}

Simplify to a single number:

1 =71

2 121

3 18—-31

4 12-111
5. 16-9I

6 110-31
7 15-381
8 124 -6
9. -~ 17+2l
10. ~1-3-6]
11. 3115-3]
12. —213-111
13. -51-3--5|
14. 312-14]
15. 8- 17-5]
16. 3+ 15-9]

17. -5+217-111
18. -315-91 +7
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Section 1

Multiplication of Fractions

The Meaning of Multiplication

Multiplication has the same meaning with fractions as it does with positive
and negative numbers. When we multiply 2 times 3, we make a rectangle
that is two units wide and three units long:

s 3 -

2

/

Multiplying Fractions

To multiply two fractions, we also make a rectangle. We start with a unit
chip (a small square) and we cut it into smaller pieces. For example, %5 - %
means:

EQ/S;ﬂ

1=4/4
T

1=3383 ——=
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The result is a rectangle smaller than a single unit which is %5 units on one
side and %4 on the other side. To make this smaller rectangle, we must cut a

unit square (1 by 1) into 4 parts (fourths) along one side and 3 parts (thirds) El El E E El El
on the other side. Because there are now 12 equal pieces, and our rectangle
has six (3 - 2) of them, we say that the result is 6 out of 12 or %2 of a unit:

-2

3
L 4
- 3 44
To find % - %5 we make another rectangle:
"* 2/5 4"
317
1=7/7

Li 1=56/5 4—1
This results in a rectangle that is 6 out of 35 or %35. We have 35 total sections

because we ruled the two sides into 7 and 5 pieces and 7-5 is 35. The pattern
should now be clear.

I

.
L

5

Since we chose a rectangle three-sevenths by two-fifths, we obtained a 3 by
2 rectangle with 3-2 or 6 pieces out of 35 total.

Section 1: Multiplication of Fractions 73



I o | o |

Multiplying the denominators (bottom numbers) gives us the total number of
pieces. Multiplying the numerators (top numbers) gives us the number of pieces in
the result. The result is the fraction of the unit square that the multiplication
represents.

Tt

The ratio or fraction of 6 out of 35 (94s) is the final result.

Using Chips

To use the chips for this process, we will have to change our system of
representing fractions. Instead of a using a square for one whole unit, we
will use a rectangle that is made up of small chips. If we choose the correct
number of chips for each side, we will not need to draw lines or cut up the
chips.

For the first example above of %5 - % we will use a 3 by 4 rectangle to
represent one whole unit. This will allow us to measure thirds in one
direction (where there are 3 chips) and fourths in the other direction:

1=4/4

1 - 3/3 34—

o3 / / /
LT

S S S

The large rectangle represents one whole. Again, we see that %5 - %4 = %o.
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To multiply % - %5 with the chips, we lay out a 7 by 5 rectangle and then

measure three-sevenths and two-fifths: El El El E El El

W—»‘

You may also have realized that % times % can mean three-sevenths of
two-fifths.

- 3//

215

To summarize this property with symbols:

Multiplying fractions
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Exercises
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Multiply the two fractions. Use chips or pictures to illustrate each

problem.

(Use a 2 by 4 rectangle)

(Use a 3 by 3 rectangle)

10.

QU1 0|UT W= O|UT 0|Ul Ul R W WIN W[~ N~
Gl W R W R W WIN Ulb Ulb T WIN -
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Section 2
Division of Fractions

The Meaning of Division

With whole numbers, 6 + 3 has meant

“How many threes in six?”

This means that we get out six chips and make groups of three; the result is
2 because there are 2 groups.

2 groups wide

L L
/ / 3 chips in a group
V-7

Another way to state the problem is to ask:

“If we put 6 into a rectangle that is 3 units high, how wide will it be?”

-t 2 —

6 units total

6+3 =2 3 Make it 3 units high

Y How wide is it? The result is 2.
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Dividing Fractions

I o | o |

Division problems with fractions have the same meaning as the familiar

examples above:

6+'% means “How many halves in six?”

We take six wholes and count the number of halves. There are 12 halves, so
the resultis 12:

6 wholes

2 halves

]

Again, we can look at the problem as a question of using 6 units to construct
a rectangle that is 4 unit high. The result is the width, or 12:

¢‘ 12 -

1/2

1. Take 6 units.
2. Make a rectangle that is ' unit high.
3. How wide is it? This is the result.

We could count each half, but it would be faster to notice that each whole
has 2 halves and that there are 6 groups of 2 or 6-2 = 12 in all. This suggests
that
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Using Chips

To use the chips, we do the same thing that we did for multiplication—we
change the size of a whole so that we do not have to cut up the chips. In this
case, because we need 2 halves in each whole, we use 2 chips for each whole:

6 units

1 whole is 2 chips

If we arrange the chips in a rectangle that is %5 (1 chip) high, the result is a

width of 12:

I o | o |

The result is 12 (halves)

The result is the width: 12

7 S R R SR R S R

Here is a second example using the chips: How many thirds in 4?

4 +

W=

1 whole is 3 chips

Section 2: Division of Fractions

The result is 12 (thirds)

79

/




I o | o |

Division: Method |

There are two different ways of visualizing the division of more compli-
cated fractions. Consider:

42
"3

This means we should count how many groups of %3 are in 4, so we set up
4 wholes, each made of 3 chips:

There are really 12 chips, with each chip representing 1, so groups of %4 are
groups of 2 chips. There are 6 groups in all:

6 groups of >

4 wholes

4 wholes

When making groups of two chips, be sure to use all the chips—separate
pieces from different wholes are joined to be one group. Here is a summary
of the process:

12 +2 = 6 groups

4 wholes 4 -3 =12 pieces

(4 by 3 rectangle)

Groups of %
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We multiply the first number (4) by the denominator of the fraction (3) to

find out how many pieces we have (12). Then we divide by the numera-

tor (2) to find out how many groups we have (6). El El E E El El
Consider another example:

N €V]

6+

We make each whole from 4 chips, where each chip is Y4. This gives us a total
of 6-4 or 24 chips. Since we want groups of % (3 chips), we divide 24 by 3 to

get 8:
6 wholes 8 groups Of%
y Y L O . S
MR Ay
S L

Since we actually multiply by the denominator of the fraction and then divide
by the numerator we write the technique this way:

Method I: Dividing by a fraction

a-—

=(a-c)+b = %

b

a -

Division: Method Il

There is a second way to visualize the division of fractions. In our first
examples, we looked at problems like

L
"2
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We noticed that there were 2 halves in each whole and then multiplied 6

ElElEEElEl times 2.

For the problem

0.2
"3

we could find out how many groups of %4 are in each whole, and then

multiply that times 4:
1 whole 1 whole
2 1 of a group of 2
2
— 1 group of 3

We can see that there are 1 2 or % groups in each whole. Notice that we are
looking at 115 groups of %4, not at simply 115 wholes.
Now we can count 4 groups of 1 %5, or 4 times 1 V4:

4 4 .

3

8/2

|

It is not an accident that 3 looks like %5 “flipped over.” When we ask

N | W
I
(@)

I R —

“How many groups of % are in 1 whole?”

We are asking

“What times % is 1?7

The answer is 3 because % -%; = % = 1.
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Here is an illustration of finding how many groups of % can be made out of

one whole. The result is the reciprocal of %4 or 45. There are 1%5 or %3 groups: e e e

4

1 whole 1 whole
1.3
3 g 3 9%
4
N 3
— 1group of —
4
Total is 1 3 or —

3

Now we can do the same problem that we did in the previous topic:

3
6+

Thereare 43 groupsof % inevery whole, and we have 6 wholes, so we have
a total of 6 times %3 or 8 groups as a result:

1 3 groups of 3 in each whole.

4
6 wholes. 4
Each whole is 4 chips. 6 3 total groups.
4/3
[ 6 -
3 4 6 4 6-4 24
6+ 4=%31313°-3°°%
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Summary

I o | o |

To divide by a fraction, we have two methods. With Method I, we multiply

by the denominator and divide by the numerator of the divisor. With
Method 1II, we multiply by the reciprocal of the divisor. Both methods
accomplish the same thing, but they are slightly different ways of visualiz-
ing the same process.

Method I
b ac
a+ = (u-c)7b=?
Method II
,b_ ¢ _ac_ac_ac
e T bT1 b T1b b

Note: We can use the chips to illustrate more complex situations such as the
division of two fractions or two mixed numbers. See the APPENDIX for more
information.

Exercises

Use your chips to illustrate the solution to these problems. Try

both methods.
1 2+%
2 2+§
3 5+%
4 6+§
5 3+§
6 4+§
7. 1+%
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Section 3
Compound Fractions

Division and the Meaning of Fractions

A fraction can be thought of as a division problem. For example:

% means 3 + 5

It is not necessary to take this for granted. If we look at the meaning of the
division 3 + 5, we will see that the fraction 35 represents an equivalent
amount. We have thought of division in several different ways:

e 1. Divide 3 into 5 equal pieces. How large is each piece?

e 2. How many 5’s in 3?

e 3. Arrange 3 units in a rectangle with a width of 5. How high is the
rectangle?

The first case:

i Start with 3 units.
— ||| Divide into 5 equal pieces.
|t Each strip is %.
—3/5 OR

Divide 3 into five equal sections.
Each section is .

The second case:

How many 5’s can we make from 3?
3is % of a 5. The result is ¥.
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The third case:

Take 3 units. Divide into fifths.
Build a rectangle of width 5.
How high is it? The result is ¥. Y

3/5

To summarize:

Fractions and Division

a
E=u7b

Compound Fractions

We can use this idea of division to simplify more complex fractions that
contain fractions. A fraction containing other fractions is called a compound
fraction. To simplify compound fractions, think of the larger fraction as a division
problem. Then multiply the first number by the reciprocal of the second. For

example:
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If one number is not a fraction, you may want to write it as fraction before
continuing:

With algebra symbols, we can summarize the process like this:

Compound Fractions

Exercises

[lustrate these examples with pictures to demonstrate why the

fraction and the division problem are equivalent.

2

1. 5—273
5

2. Z—ST4
1

3. 5—172

Simplify these fractions by rewriting the fraction as a division

problem. Complete the division to find the answer.

7

16
L 5

8

3

8
Y7

16
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Properties
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Section 1
Properties of Addition and Multiplication

Commutative Property of Addition

We know that
3+4 =4+3
because
3 4
+
s > s
+
In symbols:

Commutative Property of Addition

3+4=4+3
or
a+b=b+a
for any numbers a and b

When we add two numbers, the order does not matter because we get the same total
of chips in either case.

Associative Property of Addition

What is the meaning of 3+4+57?
Because we think of adding only two numbers at one time, do we mean

B+4)+5 or 3+(4+5)?
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Of course, we can see that it doesn’t matter because we will get the same
answer in either case: )
H
B+4)+5 3+(4+5)
L e et e
NN HENpEEEEEEEEN

In summary:

Associative Property of Addition

B+4)+5=3+4+5)
or
@+b)+c=a+b+0
for any three numbers a, b, c

Commutative Property of Multiplication

We all know that
3-4=4-3
Why is this true? We can check it by doing the addition

3-4=4+4+4=12
4.3 =3+3+3+3 =12

but this only confirms that it is true; we still don’t know why.

Since multiplication is making rectangles, we can build two rectangles—one
will be three by four and the other will be four by three.
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Then we have:

4.3
3-4

With symbols, we have:

Commutative Property of Multiplication

3:-4=4-3
or

a-b=b-a
for

any two numbers a and b

When we multiply two numbers, the order doesn’t matter because we are
making a rectangle that is the same size in either case.

Many properties are this easy to understand; many properties describe
ideas that you already know.

Associative Property of Multiplication

What is the meaning of 3-4-57

Since we have looked at multiplication of two numbers as making a rectan-
gle, we will look at the third number as making a three-dimensional box:

/
/

~

L754>/
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Let’s look at

3-(4-5) LS

as three (3) groups or slices that are four by five (4 - 5):

N
- -
RN

I FgJ

What is

(3-4)-5?

It is five (5) slices, each three by four (3 - 4). We count the small cubes (60):

o~
o~

-~ 5 F—6—J/
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These two amounts are obviously equal, because we are simply counting

”E the same number of blocks in a different order.

o~

—f

N
W\

I S—

o~

O\
-

/
=1 bt

3 groups of (4-5) 5 groups of (3-4)

Associative Property of Multiplication

3-4-5=3-4)-5
or
a-b-00=(-b)-c
for any numbers a, b, and ¢

All of these commutative and associative properties are examples of the
same idea: if you count a group of chips or blocks in two different ways, you get
the same answer.
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The words used for these properties—associative and distributive—have a
meaning in mathematics that is similar to their meaning in everyday lan-

guage:

Associative Properties describe the grouping or
association of numbers.

Commutative Properties describe the order or
commuting of numbers.

Exercises

Use your chips to show why each statement is true, then identify
the property (or properties) that you have used. To show the state-
ment is true, arrange chips to represent each side of the equal sign

and show why the two pictures are equal.

Example: 4-(2-3)=(4-2)-3
Solution: 4-6=8-3=24

1. 7-4=4.7

2 1+2=2+1

3. 5+(6+7)=(5+6)+7
4. 1-2-3)=(1-2)-3

5. 2+ (3+4)=(2+3)+4
6. 4+(3+2)=(2+3)+4
7. 2-3-4=2-(4-3)
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Section 2
The Distributive Property

Multiplying a Number Times a Sum

When we multiply a number times a sum (the addition of two other
numbers) we discover the distributive property. It is a very easy concept;
in fact, you may already know it.

5(2 +4) means: 5 groups of (2 plus 4):

2+4
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If we count the rectangles separtely, the total number of chips will be the
same as if we count them together:

y A4

/
/
/

5-2 5-4

Again, you can add first, then multiply:

52+4) =56 = 30

or you can multiply first, then add:

52 +4) = (52) + (54) = 10+20 = 30

If you multiply first, you must multiply the 5 times both the 2 and the 4.

Multiplying Times a Difference

Is there a property that will tell us about
2-(4-3)?

First, let’s think of it as a rectangle that is two (2) on one side and four minus
three (4 — 3) on the other:

e

T

2

v

This is really a two by one rectangle equal to two (2):

=

.
L
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To try another way, we can think of it as a two by four (2 - 4) rectangle and
a two by negative three (2 - -3) rectang]le:

R /
TN
(LM

A
L

L 54

This is also equal to two (2).

To summarize, we can subtract first and then multiply, or we can multiply
first and then subtract. The answer is the same.

Distributive Property

34+5)=B-4+@3-5)
or

alb+c=(@-b)+(a-0)

abb-c)=(@-b)-(a-c)

for any three numbers a, b, and ¢

Multiplying Two Sums

The next case we will look at is the idea of multiplying two sums. For
example, consider:

2+3)-(4+5)

Since multiplication is making rectangles, we need to make a rectangle that
is (2 + 3) on one side and (4 + 5) on the other side.

-~ 4+ 55—

ﬁiw+m»|
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This large rectangle is made up of four smaller rectangles, and the result is
the sum of these four products: —~ —

- 44—

2-4=28 2-5=10

@+m$‘

3-4 =12 3-5=15

2+3)4+5) =2-9+2-5+(B-49+@3-5

The four rectangles come from the four possible products of each length and
each width. In symbols, here is how we do it:

2+3)4+5 =2-49+2-5+3-49+(3-5)
=8+10+12+15

= 45

Again, it is important to work on the idea of these problems rather than
attempting to memorize the pattern. Here is another example:

2+ h

4.2 +4.5+32+ 35

42 =8 45 = 20 4+3)2+5)

=8+20+6+15

32 = 6 35 = 15 = 49

}<7@+J>
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A Familiar Example

When we multiply two-digit numbers, we have a familiar process that is
actually an example of the use of the distributive property. Here is the way
it usually works:

With pictures, think of the problem as

13-12=(10+3) - (10 + 2)

This is a rectangle 13 wide and 12 deep

13 =10+ 3
vy Vo Yo Yo
L L L L £ L 7 7 7 7 Z7000
12 =10+2 ////:/
2 7 7 7
2 7 7 7
2 7 7 7
2 7 7 7
P 7 7 7
72 7 7 7

A 7 7 7
X7 7 7

v

which is made up of four smaller rectangles:

LF—1—— 3
D 20 ‘6‘*
10 100 30
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With symbols, here is what we are doing:

13
x 1 2

6 -2 3 = 6
2 0 -2 .10 = 20
30 10 - 3 = 30
100 10 . 10 = 100
156

Distributive Property

2+3)4+5) =24 +25) +(34) + (3-5)
or

(@a+b)(c +d) = (ac) + (ad) + (bc) + (bd)

for any four numbers a, b, ¢, and d

Division and the Distributive Property

Without using pencil and paper, calculate half of $2.50.
Did you need to do long division, or did you think of it as

Half of $2.00 is $1.00. Half of .50 is .25
The answer is $1.00 plus .25 or $1.25

This is another example of the distributive property. The new idea is that the
property works when you are taking prt of something (dividing by two or
multiplying by one-half) as well as when you are multiplying by whole
numbers.

Next, think about making a recipe smaller. If your recipe calls for four and
two-thirds cups of milk, and you want to make half, how do you do it?

Half of 4 % is half of 4 plus half of % is

1 1
2 plus 3= 23
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The procedure that you naturally use is to take half of the parts and then

7 add these two halves together. This is much easier than:
L2 12 2 1
33 3 3
114 _1_7_,1
23 6 3 73
OR
1,,2)_1(12.2)_1(14)_14_7 1
2 3] 213 3 2|3 6 3 “3
The next example illustrates this property with pictures. The two sets of
pictures demonstrate that the two sides of the equation are equal.
6+4)+2 = 6+2)+(4+2)
6+4 62
10 — — 4+2
w2 00T — (6+2)+(4+2)
5 — 3+2=5

102 Chapter 5: PROPERTIES



With symbols alone, here is how it looks:

Distributive Property of Division over Addition

6+4)+2=(6+2)+“=+2)
or

(@+b)+c=@+c)+(b=+0)

for any numbers a, b, and ¢

Exercises

Use pictures or chips to showeach problem and calculate the an-
swers. Multiply or divide first, using the distributive property. Check
by adding or subtracting the quantity in parenthese first.

3(5+6)

2(1 +4)
4-1-3
4(5-2)
1+2)3+4)
B3+2)(1+1)
(8+10)+2
(6+12)+3

® N ok DN

For the following problems, use the large square in your kit to rep-
resent 100 (10 by 10), the long bar to represent 10 (1 by 10), and
the small chips to represent 1 (1 by 1).

Example: 14 -13 = (10 + 4)(10 + 3)
Solution: 100 + 30 +40 + 12 = 182

100

30

40

+ 12

182
9. 13-15
10. 14 -16
11. 21-16
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Section 3

Identities and Inverses

Operations

Addition, subtraction, multiplication, and division are called operations.
These are binary operations because two numbers are required to find the
result.

The previous sections of this chapter have dealt with some basic ideas
about operations:

e The order of the numbers (Commutative Properties)
o The grouping of three numbers into pairs (Associative Properties)
e Combinations of operations (Distributive Properties)

This section will discuss certain special numbers that are called identities
and inverses.

Identity Elements

When we add zero to a number, the number is unchanged. This i certainly
not a great mystery, because adding zero means taking a group of chips and
doing nothing to it; since the original number has an identical value, zero is
called the identity element for addition.

The identity element for an operation is the number that has no effect for that
operation.

For subtraction, zero also has no effect; taking away zero chips leaves the
identical number with which we started.

Multiplication is somewhat different. The identity element is the number
which, when multiplying any other number, leaves it unchanged:

7-1=7
8-1=38
1.7=7
1-(3) = -3

The identity element for multiplication is one. With chips, this means that to
multiply 7 - 1 we make a rectangle that is seven chips long and one chip
wide. The result is obviously seven:
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The identity element for division is also one. How many ones are there in
seven? The answer is seven. How many ones in negative five? Negative five.
Here is a summary of identity elements:

Operation Identity Example
Addition 0 32+0 = 32
Subtraction 0 53.6-0 = 53.6
Multiplication 1 23-1 =23

Division 1 53+1 = 53

Inverse Operations

Addition and subtraction are called inverse operations because they repre-
sent opposite actions with numbers and chips. Addition is putting chips
together; subtraction is taking chips away:

3
/D:D\
[T T]
5-2 %.%:J T 3+2

N
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7

Multiplication and division have a similar relationship. Multiplication is
building a number of rows; division starts with the finished rectangle and
counts the number of rows:

4N
- B3E BEH -
/

Can you explain why the operations in each pair (Multiplication/Division
and Addition/Subtraction) have the same identity element?

Inverses of Numbers

The effect of adding 4 to a number can be cancelled out by adding -4:

5+4+4 =5

This occurs because

5+4+4=5+4+4) =5+0=5

As we can see, 4 and -4 cancel out the effects of each other because

4+4=0

Since zero is the identity element, there is no effect on the total. Numbers
like these that have opposite effects are called inverses. With addition,
opposites of positives are negatives and opposites of negatives are posi-
tives. The opposite of zero is zero.

Notice that inverses exist with respect to a particular operation only;
when we multiply 4 - -4 one does not cancel out the effect of the other as they
did when we added.
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Here is an example of additive inverses:

4 +-4 cancels to 0

For multiplication, we can find a similar property of some familiar num-
bers:

23-2- - =23

N[ N

This occurs because

1 1
23-2-5 =23 [ZEJ =23-1=23

Pairs of numbers such as 2 and Y are called multiplicative inverses or
reciprocals. Each cancels out the effect of the other because their product is
one—the identity element for multiplication.

Here is an example of multiplicative inverses:

5.2 10 10 - =5
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Exercises

Perform the operations using chips and with symbols.

3+5+-5

2. 3+21+-3

1

3. 14-2-2
1

4. 8-3-3

5. (3+-3)+%-5}

6 7-C7)

7. 6+ -(6)

8. -6+-(6)

9 12,345.8 + -12,345.8
1

10. 17-45. 15
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Section 4
Properties of Zero

Multiplication by Zero

Zero times any number is zero. This is an obvious fact and does not need to be
memorized or practiced; it is clearly true.

Five times zero is zero because five groups of zero are zero. Zero times
five is zero because if you have no five dollar bills, you have no money at
all. With chips, it looks like this:

4%5ﬂ

)

Here, you can see a rectangle with sides of zero and five representing
0 - 5. How many chips do you see?

Dividing with Zero

Consider two interesting questions:

¢ Whatis the meaningof 0-+5 or g ?

e Whatis the meaningof 50 or % ?

Dividing zero by five or any other number (except zero) is quite straightfor-
ward. We are asking

“How many fives in zero?”
or
“What is a fifth of zero?”

In each case, the answer is clearly zero.
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Dividing by zero is much more troublesome. Here we are asking:

“How many zeroes in five?”
or

“Divide 5 into 0 equal parts. How much is in each part?”

It is clear that there is no sensible answer to either question. First, you can
add as many zeroes as you wish, but you will never reach five.

0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0
+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+
0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0
+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+
0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0
+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+
0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0
+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+
0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0
+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+
0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0
+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+

Secondly, the idea of dividing something into zero parts (a zeroeth?) does
not make much sense. We conclude that division by zero is not defined. If
you are tempted to guess that the answer should be zero, consider these
examples:

12+3
16 +8

4 because 3 -4
2 because 8 -2

12
16

If 5 divided by zero were equal to zero, then

5+0=0 would mean that 0-0=5?

so 5+0 isundefined

This illustrates the difficulty—if we ever define division by zero, we will
have to create new concepts for our old ideas about multiplying, dividing,
and even numbers themselves.

Exercises

Find the answers or determine if the problem is not defined:

1. (5-0)+6

2. 0+0

3. (0+3)=+3

4, (3+3)=0

5. (3+0)-0

6. 14+ (-23--23)
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Section 9: (Optional)
Properties or Rules?

Introduction: An Example

This section is for people who have had previous difficulties with the
traditional system of memorizing rules. The purpose is to help you think
about the best way to learn mathematics.

The Distributive Law of Multiplication over Addition is traditionally
explained as a pattern in this way:

Distributive Law

a(b +c) =ab + ac

The instructions are: To multiply one number times a sum of two numbers,
you multiply the first number times each of the other numbers and then add
the products.

This type of explanation is often very confusing. We don’t know when to
use this property and we don’t know why. Many students continue to have
difficulty with this property even at the college level.

Here is how we have done it in this chapter:

Consider (2)(3 +4)

Multiplying (2) times (3 + 4) means making a rectangle that has dimensions
of (2) and (3 + 4):

, LG JL T JL 7L LT
LT TG L L L
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This is a large rectangle made up of two smaller rectangles; one is (2) by (3)
and the other is (2) by (4):

3 + 4

2 S
/

If we separate the two rectangles, we have:

(2-3)+(2-4)

2-3 2-4

. S S
V 777

Here is the summary of the property:

2(3 + 4) = (2:3)+(2-4)

This has been an example of explaining a property with objects instead of
symbols. Can you see the difference?
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Rules Versus Properties

In this book, we will usually talk about properties instead of rules or laws.
A property is something real that you can discover and understand. Properties are
easy to learn and and easy to use precisely because they are understood, not
memorized. On the other hand, rules are unexplained instructions that
must be memorized through lengthy practice. Here are some differences
between these two different ways of learning algebra:

Rules or Laws Properties
Invented by: Someone else You
Learned by: Memorization Discovery
Practiced by: Repetition Investigation
Authority Your own
Believed because of: of knowledge and
others experience
Enjoyable? Not usually Yes
Time it takes to learn Varies, but Varies, but
usually a lot usually less
A month, an
Length of time re- hour, or until Along time!
tained the next test.
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We will always concentrate on why things work , not on memorizing what
to do. If you try this method, you will find that algebra will be more
interesting and much easier to learn.

Here are some of the advantages of learning why instead of memorizing
what to do:

114

Learning each topic will take less time. When you know why, you
don’t have to do as much practice.

Learning will be more fun. The boredom of repetition will be
replaced by the excitement of real investigation and problem solv-
ing.

You will retain the material for a long time. Memorized, meaning-
less rules are often forgotten in a few days. Material that is truly
understood will never really be lost.

Mathematics will seem less complex. Many properties and tech-
niques are really very similar; many properties are already known

to you.

You will be in control. You will know when you understand the
material and when you need more work.
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Chapter 6

Expressions




Section 1

Simple Expressions

The Meaning of Unknowns

A group of unit chips can be represented by an unknown or variable like x.
We join an unspecified number of chips together to form a bar called x:

£ /l e
L L L L)
. Z

Unknowns can be positive, negative, or zero. We use unknowns to represent
quantities that will be known at a later time. Because unknowns are actually
numbers, we treat them in the same manner as any other numbers.

Expressions

An expression is any quantity that stands for a number. Expressions may
be as simple as one number or unknown, or they be lengthy statements
including many numbers, unknowns, and operations:

Examples of Expressions

3x
3x+1
-17
3x+2+6x-2

Simple Expressions

It is easy to visualize expressions that include only one or two symbols:

X

4
. ) gL TLTLT
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The Opposite of x

Just as we can find opposites of numbers by flipping the chips, the opposite
of x can be shown as the x-bar flipped over:

TN

/ \

7 .
X -X

A\

This -x may be called the opposite of x, the additive inverse of x, or
negative x. The last term—negative x—should be used with care. Because x
may stand for either a positive or negative number, negative x stands for the
opposite of x; it is not necessarily a negative number.

The opposite of the opposite is still the original amount:

“(5) = +5
-(-x) = +x
v T
X -X -(-x) = +x
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Finally, x and -x are additive inverses. When added, they “cancel” to zero in
the same way that +3 and -3 cancel:

Evaluating Expressions

An expression that includes unknowns has no exact value because we do
not know the value of the unknown. If we choose a value for the unknown,
we can then evaluate the expression to determine its value.

To evaluate an expression, simply substitute the value of the unknown
into the expression and then carry out the indicated operations:

If x =7, to evaluate x + 5:
x+5
(7)+5
12

If x = -5, to evaluate 4 — x:
4-x
4 —(-5)
4+5
9

With the chips, we simply substitute the indicated number of units for the
x-bar and then complete the count of unit chips. For x + 5, where x = 7:

xX+5

. /7 L TLJLTLT

(7)+5
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For the second example, we start with a diagram of 4 — x, then we figure out

the value of -x when x is -5, and then we complete the count of unit chips:

VG LT LT

7 ELJ LT

VTG LT

VLT LT

The x-bar can stand for any number—positive, negative, or zero.

Exercises

Ly L 7L T

Draw pictures of the following expressions. Evaluate each expres-

sion three different times—when x is 3, 0, and -2:

A A L o

U (U
I

X+6

2+ -x
X+5+x+x
S+x+5+-x
3+x+5+(x)—-x-1
X+x+x-5
X+x+x+x+x-3
4+x

X - X

5

x+3+(3)
x-3-x-2-x-1
3-—x

-x+3

x+(-3)
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Section 2
Multiples of x

More than One x

If x is a certain quantity, the idea of several x’s is a natural extension of our
idea of one unknown:

2x

3x

An expression like 2x also can be thought of as a multiplication problem:

2x = 2-x = xX+X

As we can see, we can call this expression “two x” or “ two times x” and the
meaning is still the same. Expressions such as -5x will be shown as 5
negative x-bars. In later chapters, we will see that the idea of (-5)-(x) is also
appropriate.

Evaluating Expressions with Multiple x’s

To evaluate an expression like those shown above, we still substitute a
certain quantity for x, but we must be careful to carry out the indicated
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multiplications where a number is multiplied times x. For example, evalu-

ate 2x + 5, where x = 6: L7/ 7

2x +5

2(6) + 5

12+5 =17

Repeating this example for a different value, where x = -3:

2x+5

2(-3)+5

N \‘\ 6+5

\
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If the expression contains negative x’s, we must first substitute the correct
value for x; then we flip over the substituted chips to show the opposite of

.
7 &/ x. For example, to evaluate -2x + 3, where x is 3:

o 43 [ ]

26)+3 T

i ,,,,,,
-(2-3)+3 % OO0
|
=

|
6+3 ooo BEd
/

2x +3 | | LI

_2(_3)+3 — I:I:‘:Ii

+6+3 T i

N

.
9 oY HE
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Exercises

Use chips to represent the following expressions. Evaluate each

Ly L 7L T

expression four different times forx =1, x =5, x =0, and x = -1.

1. 3x-15

2. 3x-12

3. 2x+5+3x

4, Bx+2+x+(3)
5. 225x+1+-225x (Do you need the chips?)
6. 5-x

7. 2-3x

8. 0-x+16

9. 3x-2x+6-2x
10. 2 - (-3x)

11. 2x-3+x-5

12, 4-x+2+3x
13. 5x-2+x

14. 3 +2x-1-x
15. “(2)+3x+5

16. x-5-3x+1

17. -(4x) +3 +x

18. -3-2x-(-5)

19. x+x+3x-5
20. 2-3x-4x+1
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Section 3
Combining Similar Terms

Combining Terms

Each group of similar chips in an expression is called a term:

Expressions Terms
3x +5 +2x 3x,5, 2x
17 - 2x 17, 2x

Notice that the 2 in 2x is not a term.

Before we evaluate or use an expression, it is usually best to combine similar

terms:
]
B3x+5+2x+1 [ ]
]

3x+2x+5+1 |

5% +6 ]

The process of combining similar terms will save time when evaluating
expressions and will also be helpful in techniques presented in future

chapters.

124

Chapter 6: EXPRESSIONS

N
EE




Positive x-bars and negative x-bars are combined in the same way as
positive and negative chips:

Ly L 7L T

| | O | | [
| | [ | | [
| . U Bx+2+5x-3
I
| | | | O [
| N | [ [ B3x+5x+2-3
| | | | L]
1
I
~— | | _—— 1
| e | %
L— 1 = L]
I
I
I 2x—1
I
Multiplying Numbers and x’s
What is the meaning of:
2-3x?
Using symbols, we can write:
2-3x =2-(3-x)
= 23x
=2-3)-x
= 6.x
= 6x
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If this seems too formal, think of the answer as 2 groups of 3x. This is 3x + 3x
or 6x. Here are other examples:

6x-5 = (6-x)-5
(x-6)-5
=x-6-5
x-30
30-x
30x

6x - (5) = (6-x)-(5)
(x-6)-(5)
xX-6-(5)
x - [6:(5)]
x - (-30)
=-30-x

= -30x

Common Errors

Most of the errors made by students can be avoided by paying attention to
what the symbols mean. For example, consider the following errors made
while combining similar terms:

3x—x =3 (Not true)

3x+6

9  (Not true)
3x+6 = 9x  (Not true)
2x-6 = 4x  (Not true)

These errors usually occur when students are attempting to manipulate
symbols by memorizing rules. When the chips are used, this type of mistake
is much more obvious:

2x—6  isnot -4x

i S — o —4 : 7 7
£ L7 £ : 7 7
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3x+6 isnot 9x

7 LD LT . 7 7
&y Sy . 7 . %
7 &7 £T . 7 7
: 7 7
Exercises
Identify the terms in these expressions:
1. 3x-x+5
2. 0
3. 4x+1+1
4. 1-2+x
Simplify these expressions by combining similar terms:
5. 3x+ (2x)(5)+1
6. 4x+3+(3)2x)+2
7. 4x+1+6x+3+x
8 4dx+3x+1
9. 2+ 3x+5x+6
Evaluate these expressions before combining similar terms and af-
ter combining similar terms. Are the results the same? Do each
problem with x = 4 and with x = -1.
10. 3x+2x+1
11, 4x+3+2x+2
12, 4x+1+6x+3+x
13. 4x+3x+1
14. 2+ 3x+5x+76
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Section 4

Expressions and Parentheses

Using Parentheses

Parentheses have the same meaning with unknowns as they do with exact
numbers. You will remember that with exact numbers, parentheses indi-
cated an operation or group of operations that were to be done first, before
any other operations were done outside of the parentheses.

With unknowns, parentheses still indicate a group of terms that are
together, but we cannot always complete the operations indicated because
we do not know the value of the unknown term. Three examples are:

3(x +5)
5+2(x-3)
6+2Bx+4)+x

As we can see, the operations inside the parentheses cannot be immediately
completed. The symbols inside the parentheses still represent a group. We can use
the distributive property to finish the multiplication; then we combine
similar terms. Here are the same examples worked out:

3(x) + 3(5)
3x + 15

Example 1: 3(x +5)

| LT 3(x+9)

3x + 15

The distributive property shown in this diagram states that three groups of
(x + 5) is the same as 3x and 15. Three times the whole quantity is the same
as three of each term.
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Example 2: 5+2(x-3) = 5+2(x+-3) LD
=5+2x+76

2\—1/

N
d

L]

Example 3: 6+2(3x+4)+x 6+23x+4)+x

6+6x+8+x

7x +14
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Negative Signs and Multiplication

L ILT
Consider

3-6(x+3)

The best way to work with this expression is to rewrite the subtraction as an

addition:

3-6(x+3) = 3+6(x+3)
= 3+76x+-18

= 6x+-15
N — L0 |
| [y
i [y
3-6(x+3) E_| [ERn)
i T |
N [EmE

I =

| [HEN

3+-6x +-18 X : o
| [HEN

| (111

]

-6x + -15

This technique is especially helpful where multiple negative signs are
present:

6+ (2)(x +-3)

6+2x+6
2x+12

6—2(x-23)
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Here is how this process is shown with the chips:

6—2(x—3) —

6+72x +6 | e

Ly L 7L T

2x +12

Summary

To simplify expressions containing parentheses:
e Rewrite subtractions as additions.
e Carry out multiplications using the distributive property.

e Combine similar terms.

Exercises

Simplify the following expressions:

1. 5(x-3)+20Bx+1)
2. 3-(x+0D5H)

3. 3-2(x-5)

4. 3-2(-x-5)

5.

-x-3x +4(5 + x)

Simplify the expressions, then evaluate:

6. 6x—-2(x+4) (x=1)
7. 6-(x-5)-3x (x=-1)
8. x+ 0(196x — 235) (x = 256)
9. 2(Bx+2)-5B+x)+11 (x=-17)
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Section 9
Expressions Containing Fractions

Fractions and Unknowns

When we wish to represent part of an unknown, we use the same fractional
notation that we use with everyday numbers:

1 1
§Of6means§-6

1 1
Eof7meansz~7

ool of 1 _1x_1lx_x
020 xmeansz-X—z-l— 2 —2

One-third of x would look like this:

hx/Sﬁ

-

There are often several ways to show these fractional unknowns:

Meaning Alternative Notations
34 of x % X % X 3%
24 of x % X % X Z?X
24 of x —%-x —%x _sz
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If the alternatives seem to represent different quantities, here is a demon-
stration of the reasons why (%) is equal to 25(x):

2x
1x i 1x
2x+3
1x J
2 :
g(x) :
1x

Simplifying Expressions with Fractional Unknowns

Fractional unknowns are simplified in the same way as numbers. When
adding, find common denominators and then combine:

When multiplying, use the same technique that we used with regular
fractions:

2x
3

ENIeS)
|
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Exercises

£ILT
Simplify these expressions. Find common denominators as

needed.
1. %+§
L
sl
L1
5. %(2x+4)
6. %2x+%j
7. %(6x)
o 23
3.
10. 12g+§ %xj
11. %+§
o
13. %—x
14. S—Zx—g
15. %@
w 33
17. < (6x-5)
3
18. %(10x+5)
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Section 6
Properties of Expressions

Properties of Numbers

All of the associative, commutative, and distributive properties described
in the previous chapter are true for expressions as well as for numbers.
Because the unknowns represent numbers, there is usually no need to state
separate properties for expressions.

Most of the following ideas are so intuitive that we have already used
them without noticing anything new. It may be helpful, however, to restate
some of the properties in a more formal manner.

Commutative and Associative Properties

These properties concern the order and grouping of numbers or terms and
are most useful in combining similar terms. For example, consider this
illustration from a previous section:

6x-(5) = (6-x)-(5)

= (x-6)-(D) Commutative Prop of Mult
=x-6-(5)

= x-[6:(-D)] Assoc. Prop. of Mult

= x-(-30)

=30-x Comm. Prop. of Mult.

= 30x

Because the parts of an expression that are being added or multiplied can
be rearranged in different orders and groupings, we can more easily com-
bine similar terms.

Commutative and Associative Properties

When adding or multiplying terms in an expression, the
order or grouping of terms may be changed without af-
fecting the value of the expression.
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Distributive Properties

£ILT
We have easily decided that

3x+4x = 7x

More formally, this can be justified by the distributive property:

3x + 4x 3(x) + 4(x)
B +4)(x)

= (7)(x) = 7x

We have also been using this property in subtraction problems:

3x—4x = 3-4)x
= (Dx = x

We can use the idea in division problems and with fractions:

6x+4_@+é
2 22
=3x+2
6x—4_g_é
2 2 2
=3x-2

Expressions have the same properties as numbers because expressions
represent numbers.

Distributive Properties

3x+4x = B+4)x = 7x

3x—-4x = 3-4)x = -1Ix
6x-4 _6x 4
2 -2 2

or for any numbers a, b, and ¢, (c not zero)

ax+bx = (a+Db)x
ax—-bx = (a-b)x
ax-b _ax b

C c c

136 Chapter 6: EXPRESSIONS



Properties of One and Negative One

£TLT
For multiplication, one is the identity element. One times any number is the
original number. With expressions, the property is of course the same:

1-3x = 3x
1- (-5x) = -5x
7x+2)-1 =7x+2
1-x=1x = x

We have also seen from the POSITIVE AND NEGATIVE NUMBERS chapter that
multiplying -1 times any number results in the opposite of that number:

1-3x =-1-3-x
(-1-3)x
(-3)x
“3x

Finally, it is most important to understand that multiplying -1 times x is -x:

1-x = -x

Properties of One

(1)Bx) = 3x
Mk = x
D) = «x

Properties of Zero

When zero is multiplied times an unknown quantity, we are taking an
unknown number of zeros. The result is always zero:

0-3x =0
3x-0 = 0
Bx+6)-0=0
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Adding zero to any expression does not change the value of the expression:

0+3x = 3x

Bx+0 = 3x

0+ (dx—-73) = 4x-73

If we add opposites together, they will cancel to zero:

3x+3x =0

X || X

A more formal proof of this fact uses the distributive property:
3x+3x = B)x+ (3)x
= 3+ 3)x
= (0)x
=0

The opposite of any number of x-bars is the same number of -x bars.

Properties of Zero

0O+x = x
0)x =0
ax+-ax = 0
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Order of Operations With Multiple Parentheses

Ly L 7L T

When expressions have multiple levels of parentheses then, as before, we

begin simplifying starting from the innermost parentheses and working our
way out. For example, let’s simplify

7x + 3[2x — 5(x — 3 — 2x)]

7x+3[2x = 5(-x-3)] First we combine like terms inside the innermost
rentheses.
7x + 3[2x + 5x + 15] Then we multiply through the innermost parentheses.

Now the inner parentheses are gone.

7x + 3(7x +15) Next we combine like terms inside the remaining
parentheses.

7x +21x +45 Then we multiply through the remaining parentheses.

28x + 45 When all parentheses are gone, combine like terms

(if necessary) in the remaining expression.

As with other expressions having unknowns and numbers, the final result
usually has two terms (one with a letter and one without) which cannot be
combined.

Exercises

Simplify the following expressions. Justify each step by referring

to the appropriate property.

Example: 2(3x + 4) — 6x

Solution:
M
2(3x +4) —6x = 2(3x) +2(4) — 6x Distributive
= 6x+8—-6x
= 8+ 6x—6x Commutative
=8+0 Inverses
=8
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10.

11.

12.

13.
14.

15.

16.

17.

18.
19.
20.
21.
22.
23.
24.

25.

26.
27.
28.
29.
30.

5(x +6) +x
2-(3+2x)
-x(3) +3x +22 + x
9y =3y + (6)(-y)

§x+§x

2-53 +x)
2-6(3-x)
dx + 2x + 2x + ~4x

6x+2_
2

~“3x-6
-3
2 3

12x + 6
6

(2-1)(3x)
-x + 4(x - 3)

4x +4
4

6x—-6
6

6x+1
6

("1)(5x)
(5)(7x)
(7x)(5)
(*7x)(*5)
(7x)(5)
(0)(3)(12)(6x)
24(3 - 3)(6x)

(60)(0)
6

5[3x —2(x +7)]

4[3(2 — 3x) + 6x]

7 —[2x + 5(6 — 3x)]
~3x +4[6+3(2x - 9)]
4x +2[5-2Bx - 7)]

1

+X

+x+1
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Section 1

Introduction to Equations

Equations

An equation is a number statement which says that two quantities are
exactly the same. The symbol = (equals) is used between the quantities to
show that the amount on the left is the same as the amount on the right. For
example:

3+2 =4+1.

Both the numbers on the left and the numbers on the right can be
combined to give 5. So the equation really says

5=5 or “Fiveequals Five”

3 + 2 4 + 1

A&y &y Oy
ey A& - avey &

This is obvious if we know all of the numbers on both sides of the equation,
but what if the equation has unknowns? When unknowns are included, we
can use the fact that both sides are equal to find out the missing amount.

Equations versus Expressions

In the previous chapter, we worked with expressions that involved un-
knowns. An expression is a quantity, while an equation is a statement that two
quantities are equal.

Expressions Equations
3x +6 x+3=5
-17 2x-3=15
3(5x— 4) +17x 3(5x—4) +17x =20
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An expression can stand for many different amounts, depending on what
we choose for the unknown; in an equation, the unknown can only stand
for numbers that make both sides of the equation equal. Here is a summary
of the differences between equations and expressions:

Expressions Equations
Quantities One quantity Two amounts that
are equal
Equals Sign No Yes

Meaning of
Unknown

Many choices

Values that make
the statement true

Exercises

Decide whether each item is an expression or an equation:

1. x+3

2. 2(x-5)+7

3. 0=0

4, 2(x-5) =2

5. 2(x-5) = 2(x-5)
1

6. 5

7. 35_x =12
3(x+5)-16x + 23

9. -1

10. O

11. 0=0

12. 3x+2 = -1

x + 12

13. 3x+ 16

14. x =y

15. y =
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Section 2

The Equation Game

Introduction

This game will help you to understand the meaning of equations and the
methods by which they can be solved. As in many of the other sections of
this book, you may find that you can easily discover the techniques of
solving equations; in fact, you may already know a great deal about the
subject.

A sample of this game was presented in the INTRODUCTION. We will now
give more detailed rules and examples.

The Rules of the Game

The game can be played alone or with a partner. You can pose equations and
solve them yourself, or you can set up equations for your partner to solve.

Begin by counting out any number of chips and writing the total
in large numerals on one-half of a clean sheet of paper. A number
between 10 and 50 chips works best.

Divide up most (but usually not all) of the chips into a small
number of stacks which are exactly equal in height. If you are
playing alone, do not count the number of chips in a stack; you can
tell if the stacks are equal by feeling the height of the chips. Place
these stacks on the other half of the paper with the remaining chips
arranged singly next to the stacks.

Without counting, determine how many chips are in a stack. We
know that the total number of chips (stacks and single chips)
equals the number written on the paper; use this information to
discover how many chips are in a stack. Check the result by count-
ing chips in the stack. If you are not correct, check that the stacks
were the same height and that the total number of chips is correct.

For example, count out 31 chips and write 31 on the paper.

144

ey _ 31
7Ly
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Lay out 4 chips singly and arrange the other chips into 3 equal stacks.

LT gL T

Calculate the number of chips in each stack. Thirty-one (31) chips minus the
4 extra gives 27 chips, and 27 divided into 3 equal stacks is 9. Check your
answer by counting the chips in a stack.

This process is called solving an equation. We write the equation as

3x+4 = 31

where x is a stack, 3x is 3 stacks, and 4 is the 4 single chips.

31

L JTLJLTLT
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Exercises

Here are some sample equation games to play. Set up the chips,
calculate the solution, and check your answer by counting the

chips in a stack.

Example: 2x +1 = 19

Solution: x=9

19

L7

23 chips: 4 stacks and 3 singles.  (4x + 3 = 23)
17 chips: 2 stacks and 1 single.  (2x +1=17)
35 chips: 4 stacks and 3 singles.

12 chips: 1 stack and 5 singles.

29 chips:

(You arrange stacks and singles. All stacks are the same height.)

ol B

32 chips: 3 stacks and 11 singles.

6

7. 23 chips: 2 stacks and 5 singles.
8. 27 chips: 4 stacks and 7 singles.
9. 27 chips: 6 stacks and 3 singles.
10. 27 chips: 4 stacks and 3 singles.
11. 18 chips: 3 stacks and 3 singles.
12. 41 chips: 3 stacks and 5 singles.
13. 32 chips: 4 stacks and 4 singles.
14. 51 chips: 5 stacks and 6 singles.
15. 40 chips: 3 stacks and 1 single.
16. 47 chips: 2 stacks and 5 singles.
17. 38 chips: 5 stacks and 3 singles.
18. 50 chips: 6 stacks and 2 singles.
19. 35 chips: 4 stacks and 3 singles.

20. 29 chips: 3 stacks and 2 singles.
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Section 3
Equations Using Unknowns

Using the Bar as x

As we learned in the last chapter, we can also represent an unknown
amount with the long bar found in your packet.

. 4

Instead of a stack of chips in a pile, the bar represents a group of chips in a
line:

'//L//

"'L'/

. Z

The bar represents any unknown number of chips; you can imagine that it changes
length in each example:

Actual Proportions: The bar
is 5 ¥ units long.

But it may stand for a
quantity of 4 units.

Or it may stand for 2.
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Equations Using Bars

2
=
=
In the following equation, what number does the bar represent?
X + 2 = 5
We are trying to find out what number of chips are needed to replace the bar
so that both sides of the equation are equal. The answer is 3, so the bar
represents three chips:
X + 2 = 5
3 + 2 = 5
The best way to find the answer is to take chips away from each side until
one side has only the bar left. In this case, we take 2 chips away and the bar
must then be equal to 3 chips.
Take 2 chips away S L -
from each side. y
This leaves the bar
equal to 3. =

To check, replace the bar with 3 chips and make sure that there are equal
numbers of chips on both sides.
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Another way to solve this equation is to add 2 negative chips to each side. gg _
Here is the process along with the algebra symbols that we will use: =/

| | D D = DDDEID Represent the equation us-

ing a bar (unknown) and
X+2 = 5 unit chips.

| L]
% — %% Add -2 to both sides.

X+2+2 =5+-2

| _ D D D This leaves the solution: the
value for the unknown.

X = 3

Here is a slightly different example:

y + (2 = 4

In order to find the value of the unknown (called y for variety) we look for
a number that, when combined with -2, becomes 4. The answer is +6.

To solve this more easily, we can work to isolate the y bar by adding 2
positive chips to each side. This will cancel the negative chips and will help
us discover the answer:

| | L]

D |:| l:' D Represent the equation us-
4

y-2 = ing a bar (unknown) and
unit chips.
| = I:‘ |:| I:' I:‘ Add +2 to both sides.
]
y—-2+2 = 4+2

D |:| l:' D This leaves the solution:
y = 6 i y=6
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Remember that

6+72=6-2

You can use either form, but with chips it is often easier to represent the
idea of adding 2.

To find the solution:

e “Isolate” the unknown by adding unit chips to both sides so that
the chips other than the bar are cancelled out.

e Use positive chips to cancel negative chips, and negative chips to
cancel positive chips.

¢ You are done when you have the bar alone, equal to a number of
chips.

To cancel out units:

Add the Opposite

Exercises

Practice on these examples. Use the chips and also write out the al-

gebra symbols for each problem.

Example: x +3=7

Solution:

| | I

x+3

N
7

x+3-3

Il
N
|
(6}

[]
[]
[]
[]
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x+4=5

xX+2=-3
y+5=2
n-4 = -1
y+2 =2
x-7=25
1M +x =12
3+y = -13
1+y =20
x-12 = 11
x+12 = -3
y-(3) =5
y+(3) =5
2+x =13
x+0=20
x-5 =12
x+5 =12
y-2=-3
y+2=-3
54x =2
7+y =4
n+6 =5
n-3 =25
x-7 =77
x+7 =77

Section 3: Equations Using Unknowns
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Section 4
Equations with Multiples of Unknowns

More than One Unknown

An equation may be more complicated than those that we have looked at
thus far. For example, an equation may contain more than one x:

2x+3 =11

The first step in solving the equation is the same as for the simpler equa-
tions—we add -3 to each side to isolate the unknowns. This gives:

‘ [
n 000 - 0000

2x + 3

| D00

DD
DD
1]
1]

|
2x+3-3=11-3 | @%%

| | I

2x =8 | | = OO
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Although we now know what 2x is, we would like to know the value of x
itself. Because the two sides are equal, we can split up the x bars into 2 gg
groups and the unit chips into 2 groups. =/

If the two sides are equal, then we can match up half of one side with half
of the other side:

1 1
5(2x) = 5(8)

Our solution is 4.
Now we will do another example. Consider

3x=9

3x = 9
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We divide each side into 3 groups and match up one group on each side
5 giving x equal to 3:

o | | OO0
369 = 30) | | - OOO
| N

x =3 - oo

Equations that Result in Fractions

Sometimes an equation will result in a situation where the chips cannot be
divided evenly into the desired number of groups. In these cases, the
answer will contain a fraction. For example, 3x = 8:

When we divide both sides into thirds, some chips on the right side must be
cut to get 3 equal parts. The result is that x = 2 %5:

1 1
;%) = 3(8)
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Exercises

Use chips to solve these equations. Write out the algebra steps for

I _OOOo sl
[ o A Hr3=T
:E% OooD

= % % o 2x+3-3 =7-3
. OO
] e 2 = 4
— - o0 -2

each problem:

Example: 2x +3 =7

Solution:

1. 3x+5 =17
2. 3x+4=-17
3. 4x-3=5
4, b5x+2 =11
5. 2y-9 =5
6. 6n-2 =

7. 2b+5 =

8. bx+1=11
9. 2+4+3x =35
10. 3x-2 =8
11. 6+3y =21
12. 0+2x =0
13. -3+5x = -13
14. 2+4x = -10
15. 3y-12 =12
16. 7n+7 = 8
17. 3x+1 =5
18. 5x =3

19. 2x-1 =0
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Section
Unknowns in More than One Term

Keeping the Equation Balanced

An equation may have unknowns in several places—on one side of the
equation or on both sides. Consider the following equation:

2x+2+x = 2x+6

0]
| | ]
6

2x +

0
| 0
2

2x  +

+ X

In an equation like this it is important to notice the position of the equals

sign because it separates the left and right sides. The equation is like a

balance and the amount on the left exactly balances the amount on the right.
Our first step is to combine like terms on each side:

sl oo
| =/ ooo

]

) L 1000
L ]
o b 10nd

3x + 2 = 2x + 6

The next step is to add or remove unknowns from both sides. We must add
or remove equally on both sides or the equations will not remain balanced. Since
the right side has less unknowns, we can cancel out these by adding two
negative bars to both sides:

] OO0

000 2x—-2x+6

3x-2x+2 %
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This leaves us with unknowns on one side only. When we combine similar
terms, we are left with:

1| OO
] 0O | O00
X+2 = 6

From this point, we can solve the equation exactly as before:

| %%% 6-2

x+2-2

L1
X DD4

Our solution is that x = 4. To check our answer, we replace each x bar on both
sides of the equation with 4 chips and then confirm that both sides have a
balanced (equal) number of chips:

| L = | CICE]
| [] | | LI

2x + 2+ x 2x + 6

0000 Opggm - D000 000

IO O
24)+ 2 +(4) 2(4) + 6

To summarize these steps:
e Combine similar terms on each side of the equation.
¢ Eliminate the unknowns from one side by adding the opposite
type of bars. Add negatives to eliminate positives, and add posi-

tives to eliminate negatives.

e Add positive or negative chips to cancel out the units and to
“isolate” the unknown.

e Multiply both sides by %, 14, etc. to match up a single unknown
with the correct number of chips.
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Here is another example:

] L[]
—— 5 -——F
] L]

3x-4 = -2x+ 6

I 0] L]
L] = L]
L] 00

3x+2x—-4 = 2x+2x+6

:DD ]
:DD = L[]
I L[]
[ ] 5x-4 = 6
L ]

We can now solve as before:

I
I 0o
5x-4+4 =6+4
I [
I 00
1 = 00
I 00
I 0o
5x = 10
1 - OO
X =2
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To check our result of x = 2, we replace the x’s with 2 chips and the -x’s with
-2 chips:

3x—4 = 2x+6
32)-4 = 212)+6
6-4 =4+6

3(2) 4 %% 0L _DD%% 202) +6
oo WY HE O

L]
6—4 %% %% = L L] 4+6

- PR - R

2 0 = Ol 2

Unknowns on the Right Side of the Equation

When we isolate the unknowns, the unknowns may be on the right side of
the equation instead of on the left.

Because
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"6 = 3x has the same meaningas 3x = 6

we do not have to swap the sides of the equation. Instead, we continue
solving in the usual way:

Negative Unknowns

In the final step of solving an equation, we may be left with negative
unknowns:

We can use our usual method to isolate the negative x by multiplying both
sides by one-hallf:

| I
| | D

2x =6

But now we have the value of the opposite of x instead of the value of x itself.
Itis clear that if the opposite of x is 3, then x is -3. We can show this physically

L | _Oo-d
22720 | O0O

=2 | | = LI

by flipping all of the chips on both sides:
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This keeps our equation balanced, because if two quantities are equal, their

opposites are also equal. With symbols, it is often written as:

| | = CIEIE]

| | = IO

x =3
“1(-x) = -1(3)
x =-3

Multiplying both sides by negative one can be shown as flipping the chips on both

sides.

Exercises

Do these problems using the chips. Write out the steps.

° ® NS w kBN

T g G
N S 9k W= Oo

3x+5-x=x-6
2x-4+x = -x+8
2y-2+y =2y+7
6-3n =n+5-3
4y-3 = 3-6y

Ix +2x+3x = 4x +4
4-2z-2z-3z = 20
6x = 2x-12
7x-5x+x =14 +x
10+x = "12x+5x -6

9y +2 = 6y -4
-x =5

-x =3
7x = “3x
2x+6 =x-9

X+6 =-2x+2

-x+1=5x+1

Section 5: Unknowns in More than One Term

161




Section 6
Equations with Parentheses

Using the Distributive Property

Some equations may contain complicated expressions including parenthe-
ses. For example:

3x+2(x-5) =15

3x + 2(x-5) = 15

\ | EEE
‘ | 00000 HH

| | Doo00 oo
EEE

Notice that the 2 is not a term. It cannot be eliminated by adding -2 to both
sides. In most cases, it is necessary to use the distributive property to
multiply out the expression 2(x — 5) so that we can combine terms and
proceed with the solution of the equation:

3x+2-x)-(2-5) =15
3x+2x-10 = 15

5x-10 = 15
54 = 25
x =5

Consider the equation:

5+3(x+2) =2(x+1)+12

Again, we cannot eliminate any of the parts of 3(x + 2) or 2(x + 1) until we
multiply out these expressions using the distributive property:
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5+43(x+2) =2(x+1)+12
5+3x+(32) = 2-x)+((21)+12
5+43x+6 =2x+2+12

From here on, the procedure is the same as in the previous section:

5+3x+6 2x +2 +12
11 +3x = 2x+ 14
11 +3x-11 = 2x+14-11

3x = 2x+3
3x—-2x = 2x +3-2x
x =3

Subtraction and the Distributive Property

When the product of two amounts is subtracted in an equation, we must be
careful to use signed numbers correctly. Consider the equation:

5-2(x+1) = 1

This is not the same as:

5-2x+1 =1 (Whynot?)

Instead, rewrite the subtraction as addition:

5-2x+1) =1
5+2(x+1) =1
5+4(2-x)+(2-1)=1
5+2x+2 =1
3+2x =1

2x =2

x =1

If there are two subtractions, you may want to rewrite both as addition:

10-3(2x-5) = 19

10 +-3(2x +-5) = 19

10+ (-3-2%) + (-3--5) = 19
10 +-6x + 15 = 19

6x+25 =19
6x = "6
x =1
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Summary

We can now add an initial step to our plan from the previous section:

o Use the distributive property to complete any multiplications of
expressions in parentheses.

¢ Combine similar terms on each side of the equation.
e Eliminate the unknowns from one side by adding the opposite
type of bars. Add negatives to eliminate positives, and positives to

eliminate negatives.

e Add positive or negative chips to cancel out the units and to
“isolate” the unknown.

e Multiply both sides by 1, 14, etc. to match up a single unknown
with the correct number of chips.

Exercises

Solve these equations using chips and algebra symbols:

1. 4(x+1)-3 =3(x-2)+13
2. 5-2(x-2)=5(x+1)+4
3. 32x+1)-2(x-1) =21

4, 6(1-x)+3 = 3x-3

5. 3B3+2x-1) = 2x-13-2x)+9
6. S5(x+1)—-4x =2

7. 2x+3(x-2) =9%x+2

8 7y-6(y-1)+3 =9

9. 3-y1+2)=-2y-5

10. 2(3x+1)-5(x+2) =1-10
11. 3(7-2x) = 14-8(x-1)
12. 1-3(x+4) = b5x-5

13. 1-1(x-1) = x

14. bx+6x+3(x-2) = 6+x
15. 3x+23x-1) = 6x

16. 5(x-2)-3x = 6

17. 2x-9 = 3(2-x)

18. 5-2(1-x) = 3(x-4)

19. 2(4x+3)-3(x-2) = 3x+8
20. 8x-3(2x+5) = x-4
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Section 7
Equations with Fractions or Decimals

Simplifying Equations with Fractions

If fractions occur in an equation, there is an easy technique for creating an
equivalent equation without fractions. For example:

§+4:x

First, think of ¥4 as x divided into 3 pieces, or one-third of x.

Although equations of this type can be solved in the usual way by subtract-
ing parts of x from both sides, it is usually easier (with symbols or chips) to
multiply both sides of the equation by a number so that the resulting
equation has no fractions. Multiplying both sides of an equation by the same
number creates an equivalent equation with the same solution as the original
equation.

§+4:x
X
3[54—4]— 3(x)
X
3[§j+3(4)— 3x
3x
?+12 = 3x
x+12 = 3x

Notice that you must multiply 3 times each term on both sides.
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3 @ + G)4@) - 3(x)

O | |
| | CIEIEE] = |
OO | |

X = 3x

After this point, the steps are the same as in previous sections:

x+12 = 3x
x+12—-x = 3x—x

12 = 2x
212) = 22x)

12 _ 2

2 2

6 =x

How do you choose the number that you will use to multiply? If x is divided
by 3, multiply by 3. If x is divided by 4, multiply by 4. If we triple 73
(one-third of x), we will get one x.

If the equation has more complicated fractions, we still multiply by a
number which will cancel the denominators. For example:

WIN

X+2 =X

It is still useful to multiply both sides by a number, and we use the same
number as in the previous example:
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—x+2=x
3(Zx+2J = 3(x)
3
2
3[5 x]+3(2) = 3(x)
3 2
(T-§]x+6 = 3x
6
3x+6 = 3x
2x+6 = 3x
2x +6 —2x = 3x—2x
6 =x

Equations with Several Fractions

An equation may contain fractions with different denominators. We will still
multiply both sides by a number, but this time we will use a number that
will eliminate all of the fractions.

The number we want will have to be divisible by all of the denominators,
or it will not “cancel” when it is multiplied times each term. The lowest
number that is divisible by a group of numbers is called the least common
multiple or least common denominator. Here is an example of the steps:

+ +1

W
>R
N =

The least common denominator of 3, 4, and 2 is 12.
X X X
12(5 + Zj = 12[5 + 1)
X X
12(5} + 12(1}

12 12x _ 12x

X
12@ +12(1)

3 t72 :T+12
4x +3x = 6x+12
7x = 6x+12
7x—6x = 6x—-6x+12
x =12
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Equations with Decimals

Decimal numbers such as .1 and 3.034 are often called decimal fractions
because they represent fractions with denominators of 10, 100, 1000, etc.
Because decimals are really fractions, we solve equations with decimals in
the same way that we solve equations with fractions.

Consider this equation:

3x+.2 =17

We find a number (the least common multiple) that we can use to multiply
times both sides to eliminate the decimals. The correct choice is to multiply
by 10, because the equation could be written as:

3 2 17

10°7170 " 10

Multiplying by 10 will eliminate the decimals and will result in a new
equation that is easier to solve:

10(.3x +.2) = 10(1.7)
(10-3x)+(10-.2) =17
3x+2 =17

We can now solve the equation in the usual way:

3x+2 =17
3x+2-2 =17-2

3x =15

x =5

Equations may also contain decimals with different numbers of decimal
places. Again, we multiply both sides by the power of 10 (10, 100, 1000, etc.)
that will eliminate decimals from all of the numbers. Consider this equation:

03x+.7 = x-3.18

There are three numbers with decimal points. Two of them (.03 and 3.18)
have two decimal places and one (.7) has one decimal place. We need to
multiply by 100 to eliminate all of the decimal places:

100(.03x +.7) = 100(x — 3.18)
3x+70 = 100x — 318
3x + 388 = 100x
388 = 97x
4 =x
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To check our answer:

03x+.7 = x-3.18

03(4) +.7 = (4)-3.18
12+7 = 8
82 = .82

To review, we chose 100 as our number to multiply because it was the least
common multiple. We could have rewritten the original equation to show
why this is true:

03x+.7 = x-3.18

is also:
3 .7 _ .38
100710 ~ * " 100

The common denominator for 10 and 100 is clearly 100.

Fractions and Decimals: How to Multiply

With both fractions and decimals, we multiply both sides of the equation by
the least common multiple. With fractions, we look at the denominators and
choose the least common denominator. With decimals, we look at the
number of decimal places and we multiply by the appropriate power of 10
(10, 100, 1000 ...).

.
=7

Multiply
For this equation: by: Reason:
X x 7 24 Common denomin-
678" ator of 6 and 8
x 3x x 1 12 Common denomin-
374 T " ator of 3,4, and 6
.02+ .13x = .15 100 Maximum of 2
decimal places
3+.001x = 3.1 1000 Maximum of 3
decimal places
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It is important to understand that you do not have to multiply these
equations, but it is usually easier to do so. If you do not multiply both sides,
you can solve the equations by subtracting and dividing with the fractions
or decimals:

03x+.7 = x-3.18
03x +.7+3.18 = x-3.18 + 3.18

.03x +3.88 = x
.03x + 3.88 —.03x = x—.03x
3.88 = 97x
3.88 .97
97 T o7*
4 =x

Summary

Now we can add one more step to our list:

Use the distributive property to complete any multiplications of
expressions in parentheses.

If fractions or decimals are present, multiply both sides of the equa-
tion by the least common multiple (least common denominator).

Combine similar terms on each side of the equation.
Eliminate the unknowns from one side by adding the opposite
type of bars. Add negatives to eliminate positives, and positives to

eliminate negatives.

Add positive or negative chips to cancel out the units and to
“isolate” the unknown.

Multiply both sides by V5, 14, etc. to match up a single unknown
with the correct number of chips.

Exercises

Solve for x.

1.

170
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10.

11.

12.
13.
14.
15.
16.
17.
18.
19.

20.

x, x_ 3

2 3 6
§+x:7

X

x—Z:9

x x_x. 7
32 4 2
2x 2
37273
%x+3=6
%x+1:x—2
3—§x:4x—5
69+x =233
3+2x =39
2x+3.1 =39
.02 +.13x = .15
3+.001x = 3.1
2x+.8 = x-4
3x +4x = 6.8 + .2x
.002x = 0

%x+.2= dx +10.2

(What is the common denominator for 5 and 107?)

Section 7: Equations with Fractions
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Section 8
Special Solutions

When the Variable Disappears

Some equations may contain the same number of x’s on both sides. This
may be obvious:

3x+7 =3x+7

or it may occur after you have combined similar terms:

3x+2(x+1) = 5(x+1)
3x+2x+2 =5x+5
5x+2 =b5x+5

If you proceed in the usual way by subtracting x’s, you will get strange
results. In the first case:

3x+7 =3x+7
3x+7-3x = 3x+7-3x
7=17

] =

3x+7 =3x+7

|
|

0]

3x+7-3x = 3x+7-3x

101
[]
00
0]
[]

00
00
[]
L1000
0
[]
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In the second case:

The two cases above have a different meaning;:

o 7=7

5+2 =5x+5
5 +2-5x = 5x +5-
2 =5

1]

]

N [

[

Since this is a true statement, the equation will be true for

any x. You can choose any value for x, and the equation is still true.
The equation is true for all x.

e 2=5

Since this statement is false, the equation is false for any x.

We substitute any value for x, but the equation will always turn out
to be false. There is no solution.

Exercises

Solve for x. Determine if there is a solution, if there is no solution,

or if the equation is true for all values.

N
=
+
(O8]
=
Il

7x +1
2(x+1) = 8
2+ 1) -2 =3(x+4) - (x+12) + 1

Section 8: Special Solutions
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33+2x-1) = 4x-13-2x)+9
2(x+3)-2x =5
2x+3 = 3

Bx-1) =x+42-x)-5
l+x-(x-1) =2
10. 3(x+1) = 3x+1

© ® N o w
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Section 1
Introduction to Exponents

Exponents and Repeated Multiplication

Multiplication is often defined as repeated addition:

5+5+5 =306
8+8+8+8+8+8+8 =7[8

For repeating large numbers of additions, this notation becomes essential:

3005 =

5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5+5

= 1500

When we need to repeat multiplications, we invent a new notation to save
time and space:

3[BBMB = 3"

222 = 2°

The raised number is called a power or exponent—it stands for the number
of quantities that we multiply. The number that is being multiplied is called
the base. We read 2> as “Two to the third power.” The operation of raising a
number to a power is called exponentiation.
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Exponent 3 numbers multiplied

ﬂl
B -2

Base Multiply 2

Notice that this is a new operation. 2 3 is not the same as 2 times 3.

Symbols and the Order of Operations

What is the meaning of:

2[8%?

Two operations are indicated—multiplication and exponentiation. Which
comes first?

203% or (20B)?
203% = 203 [B)

20
= 18  (We agree that this is correct)

(2B)} =6
66
= 36  (We agree that this is incorrect)

The two alternatives have different answers! To avoid confusion and to save
time, we agree that the first meaning is correct. Exponentiation happens before
multiplication and addition, unless parentheses indicate otherwise.

2¥* means 2 [(xz)
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When there is no sign for an operation between two quantities, the meaning
is the same as before—multiplication.

Xy’ means x° 07
(x-3)° (v + 6)° means (x-23)° Hy + 6)°

Exponentiation happens before addition, subtraction, or negative signs:

* means -(x%), not (-x)2
2 2 2
3+x° means 3+ (x), not (3+x)

3-x* means 3-(%, not 3 - x)2

Exercises

Write each quantity as a multiplication problem, then calculate

the answer:

54
45
26
10°

B w e

Write each multiplication using powers:

44 MHMMHM

7

32 [B2 [B2 [B2

00D

3[BBIHLHIBLH

10, 100 [noninoninorot ol

° ® N o

Calculate each answer:

11. (-2)°
12. (-2)*
13. 3-2°
14. 3-2)*
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Section 2
Squares

Squares and Second Powers

This section will present a visual explanation of raising numbers to a power
of 2. In past chapters, we have considered multiplication of two numbers as
the formation of rectangles:

Because 3% means 3 [3, raising numbers to the second power forms a square:

W Y L s
77 A F=35=9
7 7

When we raise 5 to the second power, we get 52 or 5 [b:

LT T 5 ——"

V-7 7277
V-7 777 A=
V-7 7 7 7 2y
V-7 7 7 7

5
52 = 5[ = 25
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This geometric property leads us to call 3° “three squared.”

Raising a quantity to the second power

Make a square using the quantity for the length
and width. The result is the area (number of unit
chips) inside the square.

Squares of Negative Numbers

We are already familiar with the meaning of multiplying two negative
numbers. The square of a negative number is always positive; we have to
“imagine” the two negatives in the original multiplication:

.

The result is +9 -3

- 9

Squares Involving Fractions

Raising % to the second power has the same meaning as raising a whole
number to the second power—we build a square % long by % wide:

~— 3/4 —
T

8/4 6

9 1= 4/4
The result is 16 L

-~ =4 -
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Exercises

Use pictures or chips to illustrate and to answer these problems:

(-7)°
2. (1)

20
3. gg

=
)
OO

g1
050
W |
i

Complete the operations of multiplication and exponentiation:

6. 15°

7. 2277

8. ()

9. 1°[@*B* W’
10. 521"

Write each number as the square of another number:

Example: 169
Solution: 169 = 132

11. 121
12. 225
13. 10,000
14. 81

15. 144

Complete the multiplication and exponentiation:

16. 3+ (-7)°
17. 3-7°

18. 3

19. 4+4°+3
20. 32 (2%
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Section 3
Cubes

Cubes and Third Powers

If powers of 2 represent squares, what is the visual meaning of raising a
number to a power of 3? Start by considering

43
This means the repeated multiplication of 4:

444

If we think of this as:

404 )

then it is 4 squares, each 4 by 4. Using cubes, we can rearrange these to form

a4 by 4 by 4 cube:
4 = 4TU1 = 64
/s / /  /
////////
/ W A -]
/| (T TF
—A—F~—~ / ///////// Y
i /|
%
yd yd 4 4 / /
|
4 %
77 7 7 % /] %
//
Y Y
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We read the symbol 4° as “four to the third power,” “four to the power of
three,” or “four cubed.” Visually, when we raise a number to the third
power, we are building a larger cube composed of smaller unit cubes. The
result of the multiplication is found by counting the number of unit cubes:

5
A W TN
A NN NN

Cubes of Negative Numbers

We have already learned that the product of three negative numbers is
negative. Therefore the cube of a negative number is also negative:

(-4)° = (-4) O4) O4) = -64

4# i —
’

|
|
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Cubes of Fractions and Mixed Numbers.

As with squares, ¢ there is no special difficulty with visualizing the cube of a
fraction—for (%4)°, we build a cube that is % on each side:

)

g 5D§D2_16245

|:||:||:|c.o

o 54—~
b/4 4 7
/ %
b4
)/

Exercises

Draw a sketch and calculate:

2% =
=

Calculate the answer:

73

218
3

ro

5. 0
O

10. 3% [B?
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Section 4
Higher Powers

Powers Greater Than Three

Our visual models become more difficult after the power of three. For each
additional step from 1 to 2 to 3, we extended the model in another direction:

Start with:

Point (no dimensions)

Connect to form:

Line (1 dimension)

Line (1 dimension)

Square (2 dimensions)

Square (2 dimensions)

Cube (3 dimensions)

Cube (3 dimensions)

Section 4: Higher Powers
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Because we cannot easily visualize a 4™ dimension, we will stop at this
point. It may be useful with some topics, however, to consider a picture of
the 4 power of a number as a group of cubes:

3! = 3[B[B[B
= 303 [B [B)
= 303"
This would be 3 cubes:
3 =3BBB3 =81
//
/
|/

Levels of Exponents

We may need to understand the meaning of a more complex expression
such as:

)"

What does this mean? The outside exponent of 4 indicates that we are to
multiply four of the quantity in parentheses:

(=Om)omo)
(29" = () 02’) 02) O2)

Even in complex expressions, the exponents have the same meaning—re-
peated multiplication. After multiplying the above expression out, we will
have:

(29" = (2) O2’) O2°) 02)
Auivivivivivivivivivivi

212
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Exercises

Complete the operations and simplify to one number:

A A A o

[EE—
= e

[EE
@ N

=R =
SN LI o

= =
® N

N =
e »

3%+ 2!
3° B*
(2%)?
(2 )’
(23)2 52
(3%?
(5%’
74
(1)’
(_1)36
(2%
3’ [p?

Section 4: Higher Powers
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Section 9
Other Exponents: Negative Numbers, Zero, and One

The Power of One

What is the meaning of one as an exponent? When we raise a number to the
power of one, we have the number only once. This means that any number
raised to the power of one is equal to itself:

5 = (5) O5) O5)
5= (5) 5)
5'= (5

The progression of powers from 3 to 2 to 1 can be visualized in this manner:
In order to extend this sequence, it will be helpful to think of every group of

53

1
5
777 /

multiplications as including a multiplication by the number 1; the 1 does not
change the value.

5= (1) O5) O5) O5)
5= (1) O5) O5)
5'= (1) O5)

The Power of Zero

What would be a sensible meaning for the power of zero?

5 =7 30 =7
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From our discussion above, we can extend our idea to zero:

5°= (1) O5) O5) O5)
5= (1) 05) 05)

5'= (1) O5)

5°= (1)

(3 fives)
(2 fives)

(1 five)
(0 fives)

Using the exponent to represent how many numbers to multiply, the zero
power must mean that we do not multiply any numbers at all. For positive

integers as bases, any number raised to the power of zero is one.
What would be the meaning of a negative exponent?

Negative Numbers as Exponents

Consider our familiar decimal system of place value. As we move to the left,
each place or column is 10 times as large as the one before. As we move to
the right, each column is Y10 as large; we divide the previous column by 10:

Place 3 2 1
1 1 1
Value 1000 100 10 1 10 100 1000
Exponent 10° 10> 10"
Because the place-values are multiples of 10, they can be represented by
powers of 10 as shown above. If we add a column labeled “0” and use our
new definition of 10° = 1, the ones column will make sense.
Place 3 2 1 0
1 1 1
Value 1000 100 10 1 10 100 1000
Exponent 10° 10> 10" 10°

Section 5: Other Exponents
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Finally, let’s extend our system to the right and label columns as -1 (107 "),
-2 (10~?), and so forth. This will preserve the pattern of multiplying by 10
when moving to the left and dividing by 10 when moving to the right:

Place 3 2 1 0 -1 -2 -3

1 1 1
Value 1000 100 10 1 35 705 1000
Exponent| 10° 10° 10" 10° 107! 107* 107°°

By this scheme, it seems sensible to define negative powers as dividing one
by the base and positive powers as multiplying one by the base:

Exponent | Action (to 1) Examples
Positive Multiply 10° = 1 010 10 10 = 1000
Zero Nothing 10°=10_=1
: . 5 1 1
Negative Divide 1072 =1+10+10 = — =
100 42

It is important to notice that the negative sign in the exponent does not mean
that negative numbers are being multiplied or that the answer is negative. Instead,
it means that the base is on the bottom of the fraction.

Sign of Exponent: Multiply or divide Exponent: Number of actions

i
5"'3 5'3

Base: The number that is used
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Now we can consider the meaning of

OO

Is there a reasonable meaning for this expression? If we use our idea of the
progression of powers, we immediately run into a problem when we use
zero as a base. As we move to the left, each number is zero times the one
before; as we move to the right, we cannot divide by zero, so there is no clear
answer. For this and many other reasons, we leave 0" as not defined.

Place 3 2 1 0
1 1 1
Value ? 0 0 0 0? = — —
0 (0)(0) (0)(0)(0)
Exponent 0’ 0> 0o 0°2 2 ? ?
Summary

* We can think of starting each exponential expression with the
number one.

» Positive Exponents indicate that 1 is being multiplied by the base
number several times. The exponent tells us how many times.

» Negative Exponents indicate that the starting number of 1 is being
divided by the base number several times. The exponent tells how
many times. Because a fraction indicates division, we often show
these divisions as the denominator of a fraction.

» Zero Exponents indicate that we begin with 1 and then multiply by
the base zero times (not at all). The result is 1.

x> = 10 Ok Ok

N .
xk k43

X =1 forx#0
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Raising zero to the zero power is not defined.

Zero to the Zero Power

0° is not defined

Exercises

192

Evaluate these expressions:

° PN ST RN

=R =
N = o

[
=W

[
N o w

N = e
S © ®

999!

999°

6—3

1—5

5—1

57" F*
(10~%) m0?
4—3

5—4

1—1
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Section 6
Properties of Powers

Introduction

In this section, we will examine some of the properties that allow us to
restate exponential expressions. All of the properties have a clear basis; it is
not necessary to memorize any of them. As you gain an understanding of
these properties, you will find that you will remember them easily.

Multiplying with the Same Base

Consider the expression
3 3*

From the symbols alone, it is difficult to tell if we can combine powers or
rewrite terms. Is the answer

The best way to find out is to ask “What does it mean?”

2’2 = 2R O2@R 2D
=Q2RRDRD2RDRD)
=2 =128

or

2(3 +4)

Once we replaced the powers of 2 with their meaning in terms of multipli-
cation, it was clear that when multiplying two quantities with the same base
raised to a power, the exponents add. We add exponents because we are
summing up the total number of factors.

Section 6: Properties of Powers 193



To check, we calculate the value of 2° 2* and compare this to the value of 2”:

2°@* = 8016 = 128
2 =(RERRD2RDD) = 128

Here are some other examples:

2’25 = (22 [@) Q2 2[R [R2[D)

Q222D DDD)
— 2(3 +5)

28

x®Oc®= (x Oc Or) Qo O O O i)

(x O Oc O Oc Ok O O)
(3 +5)
=X

8
X

Multiplying with the same base

Dividing with the Same Base

A similar property exists when we divide two quantities where the same
base is raised to a power. Consider:

24
2

Again, if we think about the meaning of this expression, it will be easy to
discover the property:

2t 222
Y Ys)
_2@@@
22D
=12 =2
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This suggests the idea that

4
2 _ ey
23
= 2!
=2

We subtract exponents because we are counting the number of factors that

remain after cancelling to one. When dividing two quantities where the same

base is raised to a power, we subtract the bottom exponent from the top exponent.
Here are some other examples:

3* 3[BBB
3? 3B
_33 303
T3 1
_ 3(4—2)

= 32

=

Y e e Ok

= |
=
-

Il
=

Zero and Negative exponents—Again

Let us return to our earlier definition that any non-zero number raised to
the zero power is one. Using our latest property, look at

35
3
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This is one, because any number divided by itself is one. By our property,

3 3BBB3

35  3[B[BLB[B
~ 36-9

3 =1

This is another reason that 30 must be equal to one. For 00, consider a similar
example:

We cannot cancel out the quantities because we cannot divide by zero. This
is another reason to decide that 0° is not defined.

We can think of a given quantity as if it were the result remaining from a
fraction where the numerator and the denominator both had the same

base. We see the result after common factors have cancelled.

» If the exponent of the result is positive, there were more factors in
the numerator.

» If the exponent of the result is negative, there were more factors in
the denominator.

o If the exponent of the result is zero, there were equal numbers of
factors that cancelled to 1.

The property shows that our definition of negative exponents is sensible.

<2
W W
H
&
&
&

I
(O8]
5|
oY)
@TH

—_
Q=

(68}
&
&

3—3

By our property of subtracting exponents, this is

3_z= 325 _ 3-3
3

Again, the property confirms our previous definition.
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Two Levels of Exponents

When evaluating exponential expressions, we often encounter quantities
like these:

@)
)
()’
By examining the meaning of these expressions, we can discover another

useful property. First, as we discussed previously, raising a quantity to a
power has the same meaning even if the quantity contains exponents:

()Y=(H)aHomHa)
(29" = (2) 02) 2)) a2)

If we expand this further, we see we have 4 groups, each containing 3 two’s.
The total number of two’s is 3 [4# or 12:

) = (2% O02°) O2°) a2’
QD2 D) 022 Q) 020 D) 2 2 D)
2RRRRRRRRDRDRD

212
— 2(3 o

When a base is raised to a power, and the expression is again raised to a power, the
result is the base raised to the product of the powers.

Two levels of exponents

(xa)b — xab

A Product Raised to a Power

If a product of two quantities is raised to a power, we can find another way
to write the resulting expression:
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(2[(B)* = (2 [B) H2[B)
2[B[R[B

(2 [B)

LN

(2[2) 03 0B)

Because the factors 2 and 3 both occur twice, the associative and commuta-
tive properties allow us to rearrange the numbers; the result is two of each.
This will clearly hold true for any quantities and any power:

()’ = (¢ Oy) Ox Oy) Ox )

S|

(r v L) Ly Ly Ly)

3

0y

Any product raised to a power can be restated as the product of each factor raised
to a power. Note that this pattern occurs because of the specific situation—
there is no general “distributive” law that allows us to always take some-
thing on the outside and apply it to the inside.

A product raised to a power

(xy)a = x ay a
The picture of a simple example—
(2 [B)* = 2°[B°

may help us to understand the meaning of this property. We start with the
left side—a square that is 2[3 or 6 units on each side. We then show that this
is the same as the right side—4 (or 22) groups of 9 (or 32):

4 B>

419 = 2> B2
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Fractions and Exponents

There are two final properties involving fractions that we will find useful to
discuss. Consider an expression where we are raising a fraction to a power:

e
3

We evaluate this by using the meaning of the exponent 2:

20 22 22 4
5‘3 “3m3 9

When we square a fraction, we actually square both the top and bottom
of the fraction. When we raise a fraction to a power, we raise both the numerator
(top) and the denominator (bottom) to the same power.

A Fraction Raised to a Power
a

EIuE S
93 v

One way of showing this visually is as follows:

ﬁZ/Sﬁ

y Ji

L
[ NS
Il
WIN

NS

L 1=3/3
|

1 =313 —

In three dimensions, here is (¥3)™:

Common Errors

The material in this section—properties of powers—is difficult for many
students. Most errors result from attempting to memorize patterns of sym-
bols instead of working to understand the concepts involved. Properties can
be learned as facts about real things rather than as meaningless patterns of symbols.
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Here are some of the common errors. Each is an attempt to apply a
pattern of symbols to an inappropriate situation:

Error (False) Picture (Why it’s not true) Looks like: (True)
(5 +2)° (5 + 2)? 52 4 92
T B
does not equal o 52 5 52 5 [Q)Z — 52 2
+ 2 + 2
5% + 27 T 2 2 2
ch‘ _x®
34 3 D4 -3 ? 4 @D y*
—5 does not equal gg Top and bottom must have the
4 0 same base to combine in this way. x° —c
P
3° 2°
?? X aya = (xy)a
does not equal Both factors must have the same
base to combine in this way. xaxb = yatb
(3 EQ.)S +6
Summary

The properties we have learned, like any rules or shortcuts, are difficult to
remember and use correctly unless you know where they come from.
Starting with basic definitions, you can derive the properties for yourself
any time that you need them.

Properties of Exponents

1 a
X =x X _ .
— =« b (x is not zero)
X
_a_ 1
x T LA a\b ab
X (x)” =x
x" = 1 (xis not zero) (y)® = 2%
xaxb — xa+b Dc|:|a ”
%D ==
o v
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Exercises

Use the properties in this section to simplify the expressions:

1. a’ w7
2 X
xS
(a’)°
(aO)lé
5. 2°[p'
2° 57!
6. ST
[B L]
7 0
0
8 x3y—5
2. 2
x°y
9. 2°B*[p?
3 1
X X
10. =
(x°)

Decide whether each equation is true or false. If it is true, why?

1. x°07% = (vy)’
12. @’ =4

13. 33 =3°
14. (3%’ =3
5
15. . 23
2_2

16. 2°@*=2°
17. (3°F)° = 1125

4 1
w.§-ﬁ
2
19. a_:i

>  be

20. (15)* = 3*5*
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Section 7

Simplifying Expressions

Using the Properties

Expressions often contain many levels of exponents and many different
fractions, multiplications, etc. It is easy to combine and simplify expressions
if we use the appropriate properties one at a time. For example:

3)5 (x 2)5 [(y 3)5
— x(2E5) |:y(3[5)
xlO @15

1 1
xOyS

(y

It is sometimes helpful to temporarily ignore the quantity inside of a pair of
parentheses if this makes the use of the properties more easily apparent:

)= (Yo )y
()’ Oy’
— x(2E5) @(355)
— xlo EylS

1 1
:xOyS

When several different properties apply, it is often possible to simplify an
expression in several ways; one way may be faster or easier, but it is not
important which way we choose. For example:

O °CP
020
EN

If we begin by raising each part of the fraction to the 5~ power, it looks like

this:

306
X

DCS

=y (15-10)
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If we simplify the fraction inside of the parentheses first, then the process is
somewhat easier:

00 oy
EN

— (x1)5

= x5

Here is the same problem done by cancelling common factors. This is a
demonstration of why the rules work:

5
P Ok O k0

O50= 0
El O D

o
35
5

=X

Whenever possible, simplify fractions and quantities in parentheses before
raising quantities to a power.

Properties and Negative Exponents

We will now discover if the properties of the previous section will apply to
quantities with negative exponents. For each property, we can evaluate the
expression in two ways: first using the rule directly, and second, using the
definition of negative exponents. For example:

2!
By the property:

¥ 0! @2+-1)
2-1

Il
2 R OR

By the definition of negative exponents:

1
x20
X

2 -1
x [k
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We can see that both methods give the same answer; we can also see how
adding a negative exponent gives the same result as subtracting a positive
exponent. Here is a second example:

(xZ)—S

By the property:

2\-3 203
@)= 2o

X
-6
=X

By the definition of negative exponents:

(X 2)—3 —

(x?)’
1

Again, the two methods give the same results.

Negative Exponents in the Denominator.

Consider the expression:

—_

Because a fraction can also represent a division problem, we can evaluate it
like this:

i_z =1+x?
X
= 1—i
xZ
2
=10
1
:_’x2

This will be true for all negative powers that are factors in the denomi-
nator.
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Of course, we also know that a quantity in the numerator (top) of the
fraction raised to a negative power can be rewritten as a positive exponent
on the denominator (bottom) of the fraction:

These two ideas can be used in the same fraction. If you wish, you can now
rewrite all factors with negative exponents by inverting these factors and
using all positive exponents. For example:

-3..-2_5 3 5
1 1

@y gl gy

z273p° a® x* 1 be
_ Z3y5
_a3x2b3

Quantities having positive exponents do not change, but quantities with
negative exponents are written in an inverted manner and the exponents
become positive. Fractions having negative exponents (around the whole
fraction) are inverted and the exponent becomes positive:

-2 2 2

a X [N

w0 _a?_x?
H B

* A quantity with a negative exponent:

In the numerator—may be rewritten with a positive exponent in
the denominator.

In the denominator—may be rewritten with a positive exponent in
the numerator.

Format and Symbols

Many students are not sure whether it is necessary to change all factors with
negative exponents into factors with positive exponents. For the purposes
of this book, there are two acceptable methods; it is not important which
way you do it, as long as you are consistent:
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Being consistent means that you show the result in one of two ways:

» Method 1: With fractions, using only positive exponents. Each ex-
pression with x or y is shown on the top or the bottom of the
fraction, whichever will result in a positive exponent.

3
Examples: * , 8
y2 x3 y2
» Method 2: Without fractions, using both positive and negative ex-
ponents.
Examples: x°y ™% , 8’y 2
Preferred Not Preferred
Method 1 Method 2
3 -2
X 3, -2 Y
2 ry -3
y X
128 128x 7 X2
x° 27
1 1 _; 3
g X ) 3x 3
8x°
3p2 .5 -2 -3 _-4
a’ b”c -2 -3 -
L Ao ccx 2y X yzz
x"y’z a’p?c?

Other forms may be called “not preferred,” but they are not wrong. It is
convenient to agree upon standard forms so that we will be able to compare
our results with others. Even if you prefer one form over the other, it is still
useful to practice both formats. Our agreement on the final form is given in
the following summary:
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Summary

To simplify complicated expressions:
» Apply each property separately.

» If the properties seem confusing, return to the most basic defini-
tions and work through every step.

» Simplify fractions and expressions inside of parentheses first,
before raising the expressions to a power.

» Use the properties with negative as well as positive exponents.

» If desired, factors with negative exponents can be rewritten with
positive exponents by using the ideas that:

- 1
:?Ca=—a
x
1
L =X
x

» Where negative exponents or fractions occur, write the result con-
sistently with one of these methods: no fractions or no negative
exponents. Do not mix fractions and negative exponents.

*  Write small common numbers (8, 16, 25) as integers, not exponen-
tial expressions (23, 24, 52).

Exercises

Evaluate these expressions by combining and simplifying. Write

your answers in one of the two forms described above:

1. x’y°x°

Xy
3. @ @)y@
s @

(mn°)*

2 -3
5, 6 [524EB
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10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

(2 5)"
37’
(- 2x73)?

v’

(x—9)0 (x4)—3
) ()7
15x3y2
20x2y

12¢° y°
12¢°y7

7
a’b®c

-3,-5 -7
a’b ¢

1

-3,-5 -7
a’b ¢

3b4—2D"1
Ha"b7)
0% s U
gac [

2
O4%3p72 0O
O
fc’a®)'g

2
[(xzy—Z)SD
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Section 8
Roots and Radicals

Square Roots

We have defined raising 3 to the second power as follows:

Make a square that is 3 long by 3 wide.
Count the number of squares inside.

This is the result: 9.

We could also consider the opposite problem:

Count out 9 unit chips.
Form the chips into a square.
Measure the length of the side.
This is the result: 3.

Try it now with 25 chips:

25

Section 8: Roots and Radicals
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The result is 5. We call this process taking the square root. It is indicated as:

V25 =5

The new symbol V' is called a radical sign. Here are some more examples:

V144 = 12

— .

V225 = 3.5
.
12
Rl
T

31/2
N N

—o —

Taking the square root of 25 can also be stated as the question “What
positive number can be multiplied times itself to get 25?” Notice that to
avoid confusion, we have ignored the possibility of choosing -5 as the
answer, even though (-5)° is 25. The square root is always a positive number.

If the difference between the square and the square root seems hard to
grasp, you have probably noticed that the two operations are very similar.
In fact, they are opposite or inverse operations in the same way that we
discussed addition/subtraction and multiplication/division as opposites:

dv2=6 [ [ [ -—+-[Dl]]] 6-4=2

- or
I

~—3

V9 =3

wl\)

Il

\O
—©
I —
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Cube Roots

Again, we can look at raising 2 to the third power as:

Build a cube 2 long by 2 wide by 2 high.
Count up the number of unit cubes inside.
This is the result: 8.

To reverse the process:

Start with 8 unit cubes.
Arrange them into a larger cube.
How large is the side of the cube?
The result is 2.

This process is called taking the third root or cube root. Taking the cube
root of 8 can also be stated as “What number to the 3" power gives 8?” The
cube root of 8 is indicated by:

V8 =2

The small 3 indicates the type of root. Here are some other examples:

AN
AN

AN

Other Roots

Just as we agreed to define exponents of 4, 5, or any positive integer, we can
define other kinds of roots For example, the 5 th™ oot of 32 is the number
that that is raised to the 5 power to give 32. The correct choice is 2.
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The following chart shows some other examples:

Symbol Meaning Result Check

>/32 What number to the 5 2 2° =32
power gives 32?

16 What number to the 4™ 2 2 =16
power gives 16?

4731 What number to the 4™ 3 3* = 81
power gives 81?7

Roots with Negative Bases

Is it sensible to define the square or cube root of a negative number?

V25 = ?
V16 = ?
8

First, consider the square roots of negative numbers. If we ask the question
“What number times itself equals -25,” we know from our study of integers
that neither negative nor positive numbers will fit; any number times itself
results in a positive number or zero. We conclude that the square root of a
negative number is not defined.

Next, consider Cube roots of negative numbers. Our question is “What
number to the 3™ power gives a result of -8?” Because three negative
numbers multiplied together will result in a negative number, there is a
possible answer: -2. Unlike the difficulty with square roots, there is no
problem in deciding that the cube root of a negative number must be negative.
Here are some more examples:

V=73 = not defined
V64 = -4
V3 =2

Because odd numbers of negatives multiply to give negative results, you
can see that odd-numbered roots of negative numbers have a solution, but even-
numbered roots do not.
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Summary

Taking roots is the inverse operation of exponentiation.

The radical sign indicates the operation of taking the root. A small
raised number indicates the type of root. If there is no number, we
agree that the quantity will be a square root.

The square root of a given number is interpreted as taking that
number of unit chips, building a larger square, and measuring the
length of the side. It is also interpreted as the answer to the
question “What number can be multiplied by itself to result in the
given number?”

The cube root of a given number is interpreted as taking that
number of unit cubes, building a larger cube, and measuring the
length of the side. It is also interpreted as the answer to the
question “What number raised to the 3rd power will result in the
given number?”

The square root (or any even root) of a negative number is not
defined. The cube root (or any odd root) of a negative number will
be negative. Any root of a positive number will be positive.

Exercises

Evaluate these roots. If necessary, simplify the radicals and com-

plete the multiplication or addition.

A A A L B R

_
SRS

==
B W

V64
V125
Y1000
1

V25 +36
V25 [3/36
8 V64

8 TH4
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Section 9
I[rrational Numbers

The Square Root of 10

Most of the examples of square roots we have been considering have
answers that are positive integers. A positive integer with an integer square
root is called a perfect square.

16, 25, 144, and 100 are perfect squares because
16 =47, 25=5°, 144 = 12°, and 100 = 10*

Can we extend the idea of a square root to numbers that are not perfect
squares? Let us consider this expression:

V10

By our previous definition, we should take 10 unit chips and rearrange them
to form a larger square. After we use up 9 chips, we have 1 left over:

If we cut up this chip (you might want to use a paper chip), we can rearrange
the pieces to get closer to a square; since we need to add equally to the height
and width, 3 + 3 or 6 pieces will work best:

‘/}// ~— 516 —

1
I
I
I
I
1
|
I
| -
I
|
4
I
I
I
I
|
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Each piece we added was Y% thick, so the figure is now 3% wide and 3%
high. To check our work, we convert 3% to a decimal and then square it:

= (3.1667)* = 10.03

:

This is a good estimate, but it is not exact. Why not?—because there is a
small area in the top right corner that is not filled in:

N
[ Y

mw

P16
—

If we wish, we can continue to try to get an exact fit by shaving off a little
from the top and right sides; we then use this to fill in the missing corner:

Strips shaved off to

/ fill in corner.

2

Missing area = HE = 31_6
aln
Shaved from top and right (6 pieces) = 31_6 <6 = 21_6
11 . 3.1620

New length of side = 3 + 5”216

215
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To check our work:

(3.1620)> = 9.998

This is even closer, but the answer is now a little too small because we
have cut off too much; the corner square now sticks out a little past the sides.

We can see that this process will get us increasingly more accurate answers
in terms of sums and differences of fractions, but that we will never get the
exact value. The square root of 10 is not a fraction.

Fractions and integers are called rational numbers because they can be
expressed as ratios of integers. If an integer is not a perfect square, we can
see that its square root is not a fraction. The square roots of 2,3, 5, 6,7, 8, and
10 are not fractions; we call numbers irrational if they cannot be represented
as fractions.

Square roots of positive integers are either integers or irrational numbers.

On a number line, irrational numbers are exact lengths just as integers are
exact lengths. We can draw a line that is V2 units long just as accurately as
we can draw a line that is 2 units long, but we can’t write the value of V2 as
an exact fraction or decimal.

V2 V5
4 -3 -2 -1 0 1) 2/3 4
—_—

Here are simple estimates of other square roots:

V5 is about 2 i 1

V11 is about 3 % ;
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Summary

» Perfect squares are integers that have exact integer square roots.
» All positive numbers have square roots.

» If an integer is not a perfect square, its square root is not a frac-
tion—it is irrational.

Exercises

Decide whether these square roots are integers or irrational num-

bers:

1. V17

2. V121
3. V&2

4. V1000
5. V144

Using the method of this section, make a first estimate of these

square roots. Square your answer to determine its accuracy:

6. VI7
7. V8
8. V26
9. V38
10. V6
11. V12
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Section 10
Properties of Roots

The Root of a Product or Fraction

When we examine the square root of (4 19), we can discover a useful
property by getting the result in two different ways:

VA9 = V(2T12) (3 [B) or VA9 =V36 = 6
= V2 DB) 02 3)
= Vi By
=(20B) =6
= 74 (579

To find the square root of a product, we find the square roots of both factors
and then multiply them to get the result. The square root of the product is the
product of the square roots. Both methods give the same result. We check the
property by finding the square root of the product. Here is another example:

V16 (25 = V16 3725 V16 (25 = V400
or N
=4[5 = V20 (20
=20 =20

We can summarize this property as follows:

The square root of a product

Vxy = VxVy

To demonstrate the first example, we begin with 4 groups of 9 (4 [P) and
then take the square root by arranging the groups of 9 in a 2 by 2 square.
Each 9 is 3 by 3, so the resulting side (square root) is 2 groups of 3 or 2 [B:

Note length of sides

-~ S
DG B el L
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When we take the square root of a fraction, the same property applies:

V-2

o4
9

In summary:

The square root of a fraction

BYER 2
Yy Vy

Common Errors

Be careful. Taking the square root is a factoring process. The square roots of
products and quotients can easily be factored and simplified. The same is
not true for the square roots of sums.

Error (False) Picture (Why it’s not true) Looks like: (True)
vo+16 ~V9+T6~ ~V9 +V16 =
does not equal 9 16 Vo6 = V916
V9 +V16 16
=7
=5
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Exercises

Use the properties from this section to simplify these expressions:

VI00TT6
V4 [B6
V925
V16 (49
36
5. V3
6. VIO

9

49
.
64
e

N

Factor the larger numbers given below into perfect square factors

and then simplify:

9. V400

10. V2500
11. V4900
12. V8100

Show that these exercises have the same result if you simplify
first and then take the square root or if you take the square root

first and then simplify:

3. V2

100

14. V%
15 V1

81

16. VIO

16
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Section 1
Using Unknowns: 1, x, x?

The: Meaning of Multiplication

To do multiplication with unknowns we must remember how we do multi-
plication with positive and negative numbers. When we multiply numbers
we are making rectangles, and the product (the answer to the multiplication
problem) is the area of the rectangle:

%‘7 Length = 8 ﬂ

yd / / /
yd / / /
/[ / / /
a4 777

Length x Width = 8 - 6 = 48 units

To get the sign of the answer (product), we start with the colored side up,
and then flip the chips once for each negative (-) sign in the problem.

(+3)-(+2)=6

(No Flips)

(+3)-(2)="6
x

(One Flip)

((3)- (+2)="6
™~
(One Flip)

((3)-(2)=+6
~
(Two Hlips)
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We should note here that the two numbers we are multiplying become
the dimensions of the resulting rectangle. If just one of these dimensions is
negative, then the rectangle ends up white side up (negative). If both
dimensions are negative, then the product (the rectangle) will end up
positive, with colored side up, just as it does when neither side is negative.

Multiplying With Unknowns

So far, we have been multiplying lengths and widths that are numbers. Can
we make areas that have lengths or widths of x? Multiplication will still
have the same meaning, but the sides may have dimensions involving x.

/4‘7 Length = 8 ﬂ

Width = x

/.

Length times Width = 8- x = 8x

As we begin making rectangles using both numbers and unknowns, the
process for determining the sign of the rectangle will remain the same. If just
one dimension (side) of a rectangle is negative, the white side is up and the
result is negative; if both or neither sides are negative, then the colored side
is up and the answer is positive.

When we’re using unknowns, we can still think of making rectangles, but
now our rectangles will have bars as well as units.

Definition of x and x?

First, let’s define x. Take a few chips and line them up in a row. Imagine that
they are joined together in a bar, but then erase the boundaries so that all we
see is a bar of unknown length. This is x.

Take a few chips V. 4 VA4
L L LT

You get a bar: x /

Put them together
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Next, we will take a few chips and form a square. If we put the chips
together and imagine that we cannot see exactly how many chips there are,
we have built a square that is an unknown width and length. This is x - x
or x™:

A/ S
Chips in a square : L L7
A Sy S
LA ‘ A

Joined together

2
x by x, or x

More on x and x2

The following table shows the names and sizes of our new pieces. Note that
the value of each piece is equal to its area.

Piece Value Length x Width = Area
Chip or 1 1 1 1
Little Square (Unit)
Bar x x 1 x
Big Square K x x X

Some of the pieces have sides in common. The unit and the x both have a
side of one. The x and the x* both have a side of x. The x does not represent
a specific number of chips; it represents any unknown number of chips. If
you try to match up unit chips along the long (x) side of the x bar, you will
find that neither 5 nor 6 nor any number of chips fits exactly.
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Our set of chips now looks like this:

T

The Opposites of x and x2

Unknowns can also have opposites. We have already been introduced to the
idea that flipping a unit chip to the white side represents -1; now we will put
together the opposites of x and .

First, let’s review the idea of the opposite of the x bar. This will be written
as -x and will be called negative x or the opposite of x.

/\

A

+X

2
In the same way, we can construct -x*:

2
+X -X
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These new pieces behave in the same way as single chips—Flipping an x or
x* changes the sign.

-(x) =-x
-(-x) = +x
< xz) — P
(X% = +x
For x:
TN TN
A _
+X -X -(-x) = +x
For %

2 2
T+ -X -(x7) = +X

Itis best to think of -x and -x* as the opposites of x and x (-x is not necessarily
a negative number!). Here is an expanded table of our pieces:

Piece Value Length x Width = Area
Chip or 1 1 1 1
Little Square (Unit)
Negative "1 1 -1 -1
Chip (Unit)
Bar x x 1 x
Opposite -x X -1 -X
Bar
Big Square X x X e
Opposite -« X -X X
Big Square
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Finally, here are all of the new pieces:

! '
1 —— | -
*+W - $+W
! !
x — ] -
f I f IV
v — X -X
L X L X

Polynomials

When we have an assortment of pieces such as units, x’s, and 2 chips, we
call this a polynomial. A polynomial can have many types of pieces

1
I
1
oOood
oood

od

or just one kind of piece.
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Each group of like shapes is called a term. When we have two bars we have
two x’s, or 2x. Three x2 pieces can be written as a 3x2 term. Here are some
examples of terms:

 E—
 E—
 E—
oogo
oogog

og

3x2

OOOo .
ooooo SR

An expresion with two terms is called a binomial. An expression with three
terms is called a trinomial.

Exercises

Set up the following expressions with chips and identify individ-

ual terms:

Example: 3x + 6

Solution: Terms are 3x and 6.

. 7 £ £T
* 7 £ LT 6
. 7 L7 LT
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U (T Gy
I

7x

7x -2

4x*

3x* -6

6 — 2x
2x* = 3x + 12
-2x*-5x -1
_OxZ

5-3x"
2x + 3

x> -5x+6
2x — x>+ 4
4x + 3x°
2x* -7
3x* —5x + 2

Section 1: Using Unknowns: 1, x, X
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Section 2
Adding and Subtracting Polynomials

Combining Like Terms

If a polynomial has two separate kinds of pieces (bars and chips), they are
not the same size and shape. This means that, in the symbolic language of
algebra, we must also have two separate terms; one with x’s (bars) and the
other with units (chips). These two terms are made up of different pieces
and therefore they cannot be combined.

2x -6 is not -4x

” 2 2 2 2

Vv 14 L V L V ¢ V /

7 Va 7 7 7
2% + 3x is not 5x

N
Y YN Y Y Y

We cannot combine these terms because different shapes cannot be treated
as if they are the same; they must be kept separate, x’s in one term and units
in another.

If you use the chips and think of polynomials as groups of shapes, it will
be easy to work with them without needing to memorize any rules. Just
combine similar shapes.
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Adding Polynomials

 E—
 E—
 E—
oogo
oogog

og

Adding two polynomials is done in the same way that we add units—we

take similar pieces from each polynomial and combine like terms.

+6

mluls
000
@

2x? -2x +6

110
NN

The algebra symbols show like terms being combined; the chips show like
pieces being combined.

Subtracting Polynomials

To subtract a polynomial, we think of adding the opposite:

(Bx-5)—(4x-2)=Bx-5) +-(4x-2)

Just as with signed numbers, the negative sign means take the opposite, or

flip the chips.

-(4x - 2) = “4x + 2

minus
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So for each subtraction, write the problem as an addition (flip the subtracted
g chips) and proceed as usual by combining like terms.

 E—
 E—
 E—
oogo
oogog

e identify the two polynomials

e subtraction becomes adding the opposite
e find the opposite
e add

Here is an example of this process:

(2x2 +X) - (39(2 —2X) H minus H H

(Zx2 +X) + -(3x2 —2X)

(Zx2 +X) + -3x% + 2x H plus H H

%+ 3x HHH
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Exercises

 E—
 E—
 E—
oogo
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Use your chips to set up the following problems. Combine similar

shapes (terms).

Example: x” + 2x” +x —2x + 6 — 2

Solution: 3x” —x + 4 \ = 2
3x —2x

3x+5-6x

5-4x* + x

1.

2

3

4. 2%+ x+ 2"+ 3x
5. 3x° -
6

7

8

9

5x + 5 + ("6x) + (-3) + 2x°
2x + x> —5x -3 g
B+ 5-x—7 y 4 — =

2x -5+ x* + 3x
10. 5-(3x)+x+7

Use chips to complete these addition problems and write the alge-

bra symbols as well:

11. (3x-2) + (bx - 6)

12. (¢ +3x +3) + (2x* = x)

13. (2¥"-x-1)+ (2 +x-1)
14. (2x-5) + (x> + 3x + 2)

15. (F*=3x+1)+(x*=7)

16. (-5x + 3) + (2x* - 3x)

17. (x> +3x-2)+ (3x*—x-5)
18. (3x +5) + (4x* - 5)

Perform the following subtractions:

19. (3x-2)-(5x-6)

20. (¥ +3x+3)—(2x*—x)

21. (2¥"-x-1)-(2x*+x-1)
22. (6x-2)-(3-2x)

23. (¥*+3x-1)—(x*-2x +5)

24. (2x +3) - (x* = 5%)

25. (2x*=5)- (x> +5x - 6)

26. (3x*=5x+1)-(x*-3x-2)
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Section 3
Multiplying Polynomials

Multiplying with One Unknown

If we have a product (multiplication) like

(3)-(x+2)

we make a rectangle with dimensions (sides) of 3 and x + 2, like this:

X ——

X+ 7 —

A

A

The product, or area, will just be the sum of the pieces we use, which is three
bars (3x) and six little squares (6):

3x+2)=3x+6
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The product, or area, is 3x + 6. We can think of this as being two smaller
rectangles added together: one rectangle 3 by x, and the other rectangle
3 by 2. In this case both rectangles are positive. HHH

og

oogo
oogog

3x 6

If one piece of our product is negative, the product will look like this:

A
>
'

— X w5

<—><,8 —

This time one of the smaller rectangles is positive (2 - x = 2x) while the other
smaller rectangle is negative (2 - -3 = -6). Thus the product is.

2(x—3)=2x-6

Using Unknowns in Both Dimensions

If we wish to find the product

x(x+1)

we build a rectangle x wide and x + 1 long. This is a rectangle made up of
two smaller rectangles. One is x by x or x%, the other is x by 1 or x:

ne—l

2 (x)(x+1)=x2+x

et X+ ]
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If we wish to find the product

(x+2)(x+1)

we must build a rectangle having each factor (x + 2 and x + 1) as one
dimension of length or width.

X+2 —
—— ) B

<7><+)‘ —

As can be seen in this illustration, the result is a large rectangle which can
be subdivided into four smaller rectangular areas. In the upper right are two
small chips, a rectangle 1 by 2 units. At the top left are two bars, defining a
rectangle 2 by x. At the lower right is one bar, in a rectangle 1 by x. Finally,
the large square forming the lower left corner is the rectangle with sides
x by x and area x”.

The area of the larger rectangle is the sum of these 4 areas:

(x+2)x+1)=x"+x+2x+2

2x 2
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This time, two of the terms are made of the same size pieces; the x and the
2x are both made up of bars, so they can be combined giving

(x+2)(x+1)=x"+3x+2

Each of the four smaller rectangles inside the large rectangle represents a
piece of the product we are seeking. When using symbols, we can find these
four smaller areas by using a technique called the FOIL method. This is
defined as shown below:

oogo
oogog

og

First
times (x+2)(x+1) X-X=X
First
Outside
times (x+2)(x+1) x-1=x
Outside
Inside [
times (x+2)(x+1) 2-x=2x
Inside
Last
times (x+2)(x+1) 2:-1=2
Last

Each piece of the product, the xz, the 1x, the 2x, and the 2, is one of the
smaller rectangles in our figure.

If one or both sides of any of these smaller rectangles is negative, then we
use our rules for signs to determine the sign of that particular rectangle. For
example, let’s illustrate the product of (x — 3)(x + 2):

R—————

!

X-3

X

]
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In this example, of the four rectangles within the figure, two are positive and
two are negative (white side up).

(x=3)(x+2)=x"+2x-3x—6

If we combine like terms, the x’s (positive bars) will be cancelled out by the
negative bars leaving:

(x=3)(x+2)=x"-x-6

Again, each piece of the rectangle comes from one piece of the product when
using the FOIL method. When some parts of our area are positive and other
parts are negative, we can think of the product, or area of the figure, as being
the difference of the areas, or the area left over when the white is taken away
from the colored area.

Here’s an example having two negative terms:

| X —— 3
'

><4/‘ ——
>;

— e -—
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This is

(x=1)(x-23)

Can you explain why the x-bars are turned white side up, and the three

chips are turned colored side up?

2
+x -3x

Here is one final example. Find the product

(x —2)(2x + 5)

This requires forming a rectangle of dimensions (x — 2) by (2x + 5):

From this we see

(x=2)(2x +5) = 2x* + 5x —4x - 10

Combining like terms gives

(x-2)2x +5) = 2x*+x-10

Do you understand where the signs on each term came from?

Section 3: Multiplying Polynomials
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A plastic grid is included with this book. You can use the grid instead of the
chips to plot multiplication of polynomials. Use a water-based marker to
outline the rectangles or chips you want to use. You can also mark areas as
positive or negative.

The grid is ruled in units of x’s and ones. The darker lines across the grid
(one horizontal and one vertical) are the lines which separate the four
smaller rectangles within the larger figure. Remember that each of these
smaller rectangles has its own sign and represents one term of the product.

Here is the example above, using the grid:

©

N O o N

x —2 high

2X

2x + 5 wide

Exercises

Look at the example products and then use your chips to do the
following multiplications.
Example: 3(-x + 4)

Solution: -3x + 12

Example: 2(x - 1)

Solution: 2x + 2
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Example: 3(2x - 3)

Solution: 6x -9

2% -3

Multiply:

2(x —4)
3(2x + 1)
3(-x+1)
“2(x - 3)
2(-x-1)
2(3x-1)
“3(-x + 3)
“2(2x - 5)

A A A o A

Try these problems using chips or the grid:
Example: (x + 3)(x + 2)

Solution: ¥*+3x+2x+6 = xX*+5x+ 6

E

AU O N[ QO O

2x -

N QN

D X

x + 3 wide

2X

Section 3: Multiplying Polynomials
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

5(2x - 3)

-3(x - 5)

2(2x + 1)
-5(-2x - 3)
-5(3x - 2)

2(5 - 3x)

-4(3 - x)
(x+4)(x+1)
(x=3)(x + 4)
(x = 1)(x-5)
(x + 5)(x - 3)
x(x - 6)

2x + 1)(x - 4)
-x(3x - 2)
2x-3)(x-2)
(x + 3)(x - B)
(x-2)(x - 6)
(x+3)2x-1)
(2x -3)(x +2)
-x(3 - 2x)
(x-2)2x+1)
(2x - 1)(2x + 3)
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Section 4
Special Products

Perfect squares

Two types of polynomials are considered special. These special polynomials
are called perfect squares and the difference of two perfect squares.

Any time we make a rectangle where the length and width are the same,
we get a square. This is obviously true if the sides of the square are just
numbers.

“Three squared”:
3»=3-3=9

5 “———__ “Five squared”:
5=55=25

—

— 3 R~ —

In fact, numbers which can be made into a square in this way are called
perfect square numbers. The first six perfect square numbers are

1, 4, 9, 16, 25, 36

Can you name the next six perfect square numbers in the series? If you
take a number of chips from this list you will be able to arrange them into a
perfect square, just as the name suggests.

In the same way, if we multiply a polynomial having two terms (a
binomial) times itself, we get a rectangle which has the same length and
width: a perfect square.

Using chips, if we multiply the quantity (x + 3) times itself, giving (x + 3)%
or x plus three, quantity squared, we will be making a rectangle having the
same length and width: a square.
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Breaking this square into its four smaller areas we find that two of them, the

7

units and the x”’s, are smaller squares.

og

3x
——

-

3x

- ro-

The remaining rectangles, the x’s, are both the product of one side of each
of these smaller squares (x - 3).

Although this example seems obvious when working with chips, it is
important to remember when using the symbolic language of algebra, that

(x+3) isnot x*+3
With the chips, we can see that these two expressions cannot be equal:

(O3]
N

(x + 3)2 is not just
X plus 3

T missing?
m
+
X

5
~— x+3—

We must include the two rectangles which each have area 3x. Remember the
FOIL method:

3x

(x+3)* = (x+3)(x+3)

2
=x"+3x+3x+9 3y

= x> +6x+9

- X + 3

When we include all four of the areas shown we get the correct result.
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Now consider a second example of multiplying a binomial by itself to form
a perfect square: (2x —5)%, or two x minus 5, quantity squared:

 E—
 E—
 E—
oogo
oogog

og

(2x -5)* = (2x-5)(2x - 5)

~— 22X - bh—=

-— X - b —

Filling in the four smaller rectangles within this diagram we again find two
squares and two rectangles.

T
-10x 51 +25
1
| DX I
45 -10x
X

The two squares are both positive (colored side up),

(2x)(2x) = 4x°
(5)(5) = 25

but this time the x-bars are negative (white side up) since

(-5)(2x) = -10x

(2x)(-5) = -10x
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Again, using the FOIL method of symbol multiplication we get all four of
the included areas and the correct result:

 E—
 E—
 E—
oogo
oogog

og

(2x - 5)* = (2x —5)(2x - 5)

= (20)(2x) + (2x)(-5) + (-5)(2x) + (-5)(-5)
= 4x*-10x - 10x + 25
= 4x* - 20x + 25

The smaller squares (x2 pieces and units) within a perfect square are always
positive in value (colored side up). This is because we get both of them by
multiplying a number times itself, which always gives a positive result.

Always Positive
—

Perfect Squares

As the two examples demonstrate, the x-bars in a perfect square trinomial
can sometimes be positive and sometimes be negative,. But in any one
perfect square, all of the x-bars must be the same sign, either all plus or all
minus. The number of x-bars will always equal the product of the square
roots of the units square and the b square, times two (because there are two
groups of x-bars).

Always Same Sign

=
Product of Square roots =
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The Difference of Two Perfect Squares

The two binomials (x + 4) and (x — 4) look very similar to each other; their
only difference is the sign on the second term. If we multiply these two
binomials together we get an interesting result.

(x+4)(x-4)

- X -4 ]

We again have a figure which appears square, but this time the two sides
will have some pieces of different colors.

-4x 41 -16

Shown as one rectangle, our example now looks like:

 E—
 E—
 E—
oogo
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X* —4x + 4x - 16

‘ -4x -16

-

T £ it (x +4)(x + 4)
— X+ 4 —
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If we overlay the pieces and subtract the negative areas from the positive
HHH slals areas, we see that the resulting area is not really a square, but a rectangle
oo having dimensions (x + 4) and (x —4).

<><44>

X + 4

If we let the positive and negative pieces cancel in a different way we get an
equivalent and surprising result.

J
|

The +4x and the -4x cancel each other out, leaving only x*and -16. So we see

.

. o x> -16

- - 4~

X + 4
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Now we can see why such products, products of binomials which differ
only in the sign on the second term, are called the difference of two perfect

squares; they are one square subtracted from another. We can use the FOIL HHH
method of multiplying symbols to verify this result.

og

oogo
oogog

(x+4)(x—-4)

()(x) + ()(—4) + (D(x) + (D(—4)
¥ —4x +4x-16
¥ +0x-16

¥ -16

In the result, each of the two terms is a perfect square and the negative sign
means to take the difference, or subtract, one perfect square from the other.

Here is a second example of a product which will generate the difference
of two perfect squares:

Bx+2)(3x-2)

Again the two binomials in the product differ only in the sign on the
-6x
| | l | |~ 4
| ! ! |2
T ~——— 3x — |2

QN | | |
‘ 9x2 (] +6x

1 __

F8x+2%

second term.

We can use both a diagram and the FOIL method to obtain the results of the
product.

L
Bx +2)Bx —2) = (Bx)(3x) + 3x)(-2) + (2)(3x) + (2)(-2)
9x% 14 = 9%% —6x + 6x — 4

= 9x* -4

In both results we are subtracting one perfect square from another; the
difference of two perfect squares.
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Exercises

Fill in the four smaller rectangles included in these perfect
squares and then use the FOIL method to get the same results us-

ing algebraic symbols.

1. (x-2)° =

<—><‘2—>

2. (Bx+1)7° =

R

3X +

————————

Multiply out the following perfect squares; verify using a sketch.

(7)°

(2x -7)°
(3x)°

(3x + 2)?
(x + 4)
(2x - 1)°
(x - 9)*
10. (5x +3)*

° ® N o kW
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Choose only the products which will generate the difference of

two perfect squares, and work out only those products both in a

diagram and using the FOIL method to verify your results.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

(2x + 5)(2x - 3)
(x +2)(x-2)
(B3x +4)(3x + 4)
(3x + 5)(bx - 3)
(3x + 5)(8x - 5)
x=7)(x+7)
(2x-1)(2x + 3)
2x-1D(x+1)
2x+1)(2x—1)
(3x-2)(2x + 3)
(5x - 6)(5x + 6)
(7x-1)(7x+1)

Section 4: Special Products
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Section 1

Introduction: Rectangles and Factoring

The Meaning of Factoring

Factoring means taking an amount and rewriting the amount as a multipli-
cation problem. Using chips, factoring is the process of taking a group of
pieces and arranging them to form a rectangle. The factors are the dimen-
sions (the length and width) of the rectangle. Start with 3x + 9:

3x + 9

The polynomial 3x + 9 makes a rectangle that is 3 by x + 3:

5

3

L

X+ 3 —d

The factors of 3x + 9 are 3 and x + 3. This is the same as saying that the
product of 3 and x + 3 is 3x + 9. In both forms, the rectangle means multiplica-

tion.

Sometimes there are several ways to make a rectangle from a group of
pieces. Start with the following chips:
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From these pieces we could make the following rectangles:

If we check the side lengths of each of these rectangles we find that they all
have one direction which is a bar and three unit squares long (x + 3), and
another which is a bar and two unit squares long (x + 2):

1 bar 1 bar
and 3 by and2
units units

x+3) - x+2)

large five
square bars
2
b + b5x
Exercises

Make rectangles from the following groups of pieces. Remember

that there must be no pieces left over and no holes or bumps in

the rectangle.
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Lo
Lo
O

]

L]

]

]
3, L0
L0
L0

Some possible solutions look like this:

1. or

2. or or
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A Clue is in the Units

Look at these two similar examples (both shown before):

one large tive bars six
square units

L0
10
. 1]

one large seven bars six
square units

1]
L0
oo 0

These two groups of pieces differ only in the number of bars. Obviously,
since the two groups shown have different numbers of bars, the rectangles
they make must have different dimensions.
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How can you tell before trying different rectangles which ones will work?
A clue is in the number of units. Both of the groups shown have six unit
squares; let’s just look at the units.

How many ways can you make rectangles using just six units?

2 units

or

1 unit

by

6 units

If we think of placing either of these smaller rectangles of units at the corner
of the larger rectangle (the total amount), we see two different possible

shapes for the larger rectangle.

In picture (a) we could fill in the rectangle using two bars on the top and
three bars on the side, for a total of five bars. In picture (b) we would need
to fill in with one bar on top and six bars on the side, for a total of seven bars.

a)

258

b)
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In each case the number of bars we need to complete the figure depends on
the dimensions of the small rectangle of units.

B 1
e ]
e —

2+3 =5 1+6 =7

If the units rectangle is (2) by (3) we need 2 + 3 or 5 bars to complete the
figure. If the units rectangle is (1) by (6) we need 1 + 6 or 7 bars to complete
the figure.

There are only these two ways to make small rectangles using six unit
chips. So if we start with one big square and six unit chips we must have
either five bars or seven bars in order to make a rectangle which has no holes
and no pieces left over. (You can try making rectangles using one big square
and six unit chips to see if any are possible with numbers other than five or
seven bars.)

Let’s Try Predicting

If you are given one big square and any specific number of unit chips, you
can learn to predict how many bars you will need to complete each figure.

What if you have one big square and four unit chips? How many ways
could you make rectangles and how many bars would you need for each?
There are two ways to make a small rectangle using four unit chips:

/? bars OO
oo

4 bars ~ ‘ L 5 bars

So we could use either four bars or five bars to make a rectangle.
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The product is given by the total number of pieces—large squares, x-bars
and units—while the dimensions of the rectangle are the factors:

large four four 1 bar 1 bar
square bars units and2 by and2
units units

o+ 4 o+ 4 = x+2) - (x+2)
large five four 1 bar 1 bar
square bars units and4 by and 1
units } unit

¥+ 5x o+ 4 = (x+4) - (+1)

Exercises

Set up the following polynomials with chips and factor:

X%+ 4x

x* + 5x

x>+ 6x+9
x>+ 5x +4
x> +8x + 15
x>+ 8x + 12
X+ 7x + 12
x> +9x + 14
x>+ 8x + 16

10. x*+9x + 20

A A L
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Section 2
Positive Units, Negative Bars

Factoring with Negative Bars

How can we factor polynomials with negative bars?

.
1]
o

To make a rectangle from pieces having positive units but negative bars we
need to remember how to multiply two numbers having signs (see POSITIVE
AND NEGATIVE NUMBERS, Section 5 or POLYNOMIALS, Section 1). We can get
a positive answer (colored rectangle) from multiplying two positive num-
bers, or from multiplying two negative numbers.

No Flips
$ | %

-~ 3 — - 3 —

Similarly, we get a negative answer (white rectangle) from multiplying two
units having different signs.

? (=3)-(+2) ?
2 o\ Flj -2
| ne Flip |
SR R— - 3
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Two Flips

(+3)-(:2)
%

One Flip



In the same way, we get rectangles made from white (negative) bars when-
ever one dimension (factor) of the rectangle is positive but the other dimen-
sion (factor) is negative.

(73)-(x)
N\ X
One Flip
~ -3 —
(0)-(2) i
/ _
One Flip |
X

For example, look at the pieces below:

+x° -5x +6

We can make a large rectangle (using four smaller rectangles) in the follow-
ing way:
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Each of the four small rectangles has its color (sign) determined by the signs
of its two dimensions. Then the composite large rectangle looks like this:

=

QN

X*-5x+6 = (x=2)(x-3)

| x-3 —

The dimensions of the rectangle are most easily read along the bottom and
up the left side. The edges of the large colored square are each +x, and the
short ends of the white bars are each a negative one (-1). In this figure the
white areas can be thought of as canceling out colored areas leaving a
rectangle with actual dimensions of x — 2 and x — 3, as shown below.

o |
x !
x5 —
Start with x> Put on -2x bars. Put on *6 units. Put on -3x bars (cancels).

(Cancels) (Adds back) The result is (x — 2) by (x - 3)

B —— B —— B ——

X-2

L

LX—BJ

As in the above illustration, the x-bars and units subtract from and add to
the original x piece. First, place negative x-bars to cancel out some of the
area. Then add back area by placing the positive units on top of the negative
bars. Finally, cancel out area with the remaining negative bars. The resulting
rectangle is two less than x on one side and three less than x on the other.
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Example: Make a rectangle from the pieces given below:

x* -5x +4

Solution: The four single chips can only form two possible rectangles—
2 by 2 or 1 by 4. Of these two possibilities, only the 1 by 4 corner rectangle
would require 5 bars (4+1) which, in this case, are all negative. Looking at
the rectangle’s dimensions we see that

X -5x+4=x-4)(x-1)

X -

Exercises

Use chips and factor the following polynomials by making rectan-

gles and noting their dimensions.

1. x*—4x+3
2. xX*-6x+8
3. xX*-8x+12
4. X -T7x+12
5. xX*-7x+10
6. x*-10x+16
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Section 3

Rectangles Having Negative Units

Factoring with Negative Units

As we just reviewed, if a rectangle has a negative value (white side up), it
means that one dimension of the rectangle is positive while the other

dimension is negative.

In the case of a polynomial, this means that if the large square () is
colored (positive), and the small units (single chips) are white (negative),
then when we make a complete rectangle we will need some colored bars
and some white bars. (You may want to review POLYNOMIALS, Section 3.)

Colored or

white bars

\ White or

colored bars

The color and number of the bars will match the positive or negative values
of the dimensions of the units rectangle. For example we could imagine two
different rectangles having +x* and -6 units:

0

-F
I +2
n 4
>

L— xfBA

i

0

F x+8—l

One of these rectangles has two positive bars and three negative bars; the
other rectangle has two negative bars and three positive bars.
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x+2ﬁ

How Can We Tell Which to Use?

If we begin with a polynomial where some of the bars are positive and some
are negative, when we combine like terms (put all the bars together), some
of them are going to cancel out.

T

Lifo—J L7x+8——‘

2

X —x -6 X"+ x -6

The sign of the bars which are left over after canceling will match the sign
of the larger dimension of the units rectangle.

Working Backwards

In order to factor a polynomial having negative units, like the following one,

x>+ 2x — 8
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we begin by putting the unit rectangle at the corner of the big square and

putting the bars we have along the longer side of the units rectang]le.

-
.

When we look at the result we should see that we are missing equal numbers
of positive and negative bars.

Missing 2
white bars

—— Missing 2
| colored bars

We know that if we add positive and negative bars to the figure in equal
numbers we are adding zero, because these pairs of white and colored bars
would cancel out.

Add equal numbers
of positive and
negative bars
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So our final figure looks like this:

p—

X +2x-8 = (x-2)(x+4)

X+ 4

Let’s look at another example. Factor X —4x-12:

X e ~12

In this case the -12 units can be put into three different possible rectangles:

12
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Putting each of these three small rectangles into the larger complete rectan-

gle we have the following options:

No

Not missing equal numbers
of positive and negative bars

YES

'Missing equal numbers of
‘positive and negative bars

No

Section 3: Rectangles Having Negative Units

‘Not missing equal numbers
of positive and negative bars
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To complete the figure we must add equal numbers of white and colored
bars, so only the middle figure will work. The solution to our example is

X —dx-12 = (x-6)(x +2)

><+2ﬁ

Summary

When factoring a polynomial, remember to take all the pieces and fit them
into a large rectangle made up of four smaller rectangles. Each of the smaller
rectangles has its sign or color determined by the signs of its two dimen-
sions, and in all, they must match both the signs and the numbers of the
pieces you start with.

Here are the steps in the factoring process:

e Consider the possible factors of the units term. (Note the required
signs.)

e Pick the pair of factors which add together to give the required
number of x’s.
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Exerc

If the units rectangle is positive, then the two factors add, and all
of the x-bars should just fit along its left and bottom edges.

If the units rectangle is negative, then equal numbers of positive
and negative x-bars will be missing when the given x-bars are
placed along the long side of the units rectangle. In such a case, fill
in both the missing positive and negative x-bars, remembering
that adding equal numbers of positive and negative bars is really
adding zero.

When you have finished this process, the dimensions of the large
rectangle you have made are the factors of the polynomial with
which you began.

x-bars Units
(rectangle) (rectangle)

X x-bars
(square) (rectangle)

ises

Factor the following polynomials:

A A A o

10.

x> +5x-6
x> -2x-8
x*—7x-8
X —1lx-12
x> -5x-6
¥ +x-12
x> +8x-9
x*—2x-15
x> +2x-15
x> —6x-16
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Section 4

Factoring Trinomials with More than One x?

More« than one x?2

If we make a rectangle out of pieces including two large squares 2:°)

then we can see (from the example shown above) that the number of x-bars
needed to complete the figure is more than we would need if we had only
one large square.

,,,,,,,,,,,

The top rectangle of x-bars is now twice as long as before because it has to
run along the top of two large squares instead of just one. To factor a
trinomial having more than one x*, we make one rectangle out of the large
squares, and a second rectangle out of the unit chips, then the dimensions
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of these two smaller rectangles multiply together to determine the number

of x-bars needed to complete the figure.

(2x)(2) = 4x

x (1)) = 3x

Working backwards we see the following;:

2x? 7x 6

x4+ 3

2+ 7x +6
equals
(2x + 3)(x + 2)

1
]

Example: Make a rectangle from the following pieces and use it to deter-
mine the factors of the given trinomial.

2x? 9x 9
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Solution:

2x)(3) = 6x

X X (x)(3) = 3x

2x2+9x+9=(2x+3)(x+3) l

F—— x+3—

b 2x+3 —

Example 2: Make a rectangle from 3x° + 11x + 6:

Solution: There are four possible ways to orient rectangles made from the
large squares and the unit chips. Each of these will require a particular
number of x-bars, as shown below:

(Bx)(3) = 9% HE (Bx)(2) = 6x [

L (03 = 3

(1x)(2) = 2x

(Bx)(1) = 3x (3x)(6) = 18x
[TT1171

L (1) = 1x

(x)(6) = 6x
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Which of these four possibilities requires 11 x-bars? What are the dimen-

sions of this rectangle?

—X + 3—

——— 33X + 2

Exercises

3x°+ 1lx + 6 = (3x + 2)(x + 3)

Factor these polynomials:

1.
2
3
4
5.
6
7
8
9

10.
11.

4x* +4x + 1
3%+ 7x + 2
2X° +7x + 3
3x + 10x + 3
2x% + 5x + 2
2x%+3x + 1
6x” + 11x + 3
6x%+ 7x + 2
6x> + 11x + 4

4x* + 8x + 3

12x% + 31x + 20 (Draw a picture instead of using chips)
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Section 5

Factoring Using the Grid

The Plastic Grid

The plastic polynomial grid provided with this book can make factoring
trinomials much easier than making rectangles out of the chips themselves.
You can make a rectangle over your grid which has the proper dimensions
for a given factoring problem. The previous example of

3x%% + 11x + 6 = (3x + 2)(x + 3)

would look like this:
10
o
8
7
6
5
1
3
2
X < REE PEEEE
X
2%
3%
_

Notice that it doesn’t matter which direction the rectangle is turned, as long
as the correct number of pieces is used. Because the polynomial grid is
plastic, it is possible to write on it using water-soluble marking pens.(Be sure
the marking pens you use have ink which will wash off or you can ruin your
plastic grid.) Just outline the areas you want with a heavy line. You can try
different arrangements of units and squares in the same way that you move
chips around.
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Positive and Negative Areas of the Grid

With the water soluble-marking pen you can mark positive and negative
areas on the grid with a plus (+) or a minus (-) sign, and in this way keep
them straight. (Of course you will remove the + and — marks after complet-
ing each problem). Just as mentioned before, the sign of each portion of the
rectangle is determined by the signs of both its dimensions.

For example, let’s use the grid to factor the trinomial

3x* —11x + 10

Pk BN

=T

2% X

3x +
2X

3%
x—2

The result is:

(3x - 5)(x - 2)

Next, use the grid to factor

2x* —7x—15

EREE

NEE

| Negative (-)

[P X 1] ol M4l 5[ 6] 78

(2x)(-5) =-10x ——

Positive (+) T @) =+3x

2X

3x
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The result is:

(2x + 3)(x - 5)

Use the grid to factor

6x° + 1x - 15
@
8
(2x)(5) = 10x -
o < EBE BEEKE Negative (unshaded)
X
Positive 1 (3x)(-3) = 9x
(shaded)
2%
3%

The result is:

(Bx +5)(2x - 3)

Exercises

Use your grid to factor the following trinomials:

Example: 2x° + 11x + 5

BRI

(2x)(5) = 10x

EINEEES

[P X

(x)(1) =1x

2x

3x
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N @k

3x* +8x+5
2x% + 11x + 12
3x* +20x + 12
3x> + 10x + 8
3x* + 14x + 8
3x% + 25x + 8
2x* +13x + 15

(Remember, start by considering possible rectangles for the large

x*-squares, and for the small unit squares, then figure out which

possibility gives the correct number of x-bars.)

Complete the following factoring problems using the plastic grid:

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

X -x-6

X* + 4x - 12
2x* +3x -5
2 —7x + 6
4x* - 4x - 15
2x* +7x - 15
6x* —x —15
6x> + 11x - 10
2x* - 13x + 15
3x*-2x-5
2x*-x-6
6x* +x -2

Section 5: Factoring Using the Grid 279




Section 6
A Shortcut Method

A Shortcut for Factoring

Let’s look closely at the solution to the last example.

6x° + 1x — 15 = (3x + 5)(2x - 3)

T
5

l

The two rectangles which have the x-bars in this figure have dimensions

(2x)(5) =10x and (-3)(3x) = 9x

Notice that each of these rectangles of x-bars has one dimension which is a
factor of 6x” and another dimension which is a factor of -15.

Mentally move the x-bars to the new positions shown here:
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This configuration suggests imagining six rectangles, each having -15 chips,
as shown in the next diagram.

This arrangement will be the key to a shortcut factoring method for polyno-
mials having more than one large square (x%). For a more detailed explanation
of why this method works, please see Appendix 5.

Let’s begin with the original polynomial 6x° + 1x— 15 and work through the
shortcut factoring method.

First, multiply the 6 times the -15. (Note that although we cannot know in
advance how the chips are to be arranged, any arrangement of 6x” and -15
units will give 6 groups of -15, or “90 imagined unit chips in the corner.

TN
@x2+ 1x +@/\@@

(6)(-15) = -90

This step corresponds to the picture we “imagined” above (wWhen we started
from knowing the solution).
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Second, we list all of the ways we could possibly factor -90, with the
negative sign meaning that one factor will be positive (+) and the other
negative (-).

Factors of -90

Factors | Difference
90 -1 89 One factor is negative
45 .2 43 One factor is positive.
30-3 27 The difference is positive
18.5 13 or negative
15-6 7
1

This list shows the dimensions of all the possible rectangles we could make
using 90 white chips. But remember that besides multiplying to give -90, the
factors we are interested in must add together to give us the total number
of x-bars we need. The expression

6x> + 1x—15

has only +1 x-bar, so we must find a pair of factors which add together to
give a *1. This requires that we use the factors

(+10) and (-9),

and tells us that the two rectangles made from x-bars must have

+10x and -9x

Knowing this we rewrite our original polynomial and replace the term +1x
with the two terms +10x — 9x, as shown below:

6x> + 1x - 15

6x> + (10x — 9x) -15

Notice that these four terms correspond to the four parts of the rectangle
which we know will be our final factored solution.

282 Chapter 10: FACTORING POLYNOMIALS



Now we have the following pieces to use:

6x° 10x -Ox -15

The third step in the process separates these four terms into two groups.
Move the first two terms (the 6x* and the +10x pieces) to one place, and
move the last two terms (the -9x and the -15 pieces) to a different place.

From each of these two groups take the largest common factor.

6x> + 10x —9x-15

2x(3x + 5) -3(3x + 5)

Largest Common Factors
In each case the largest common factor is the width of a rectangle which can

be made from the group of pieces, and the parentheses holding two terms
is the length of the same rectangle.
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This idea is illustrated below:

X +H ——
Sx + 5

%gxa 478k

The surprise, which you may have already noticed, is that the rectangles we
have made from the two separate groups of pieces have the same length ! We
can put them side by side—they will form one large rectangle.

OX + 50—

—— X - 3

The dimensions of this rectangle are the factors of the original expression.

6x° + 1x — 15 = (2x - 3)(3x + 5)
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Shortcut Method: Summary

Begin with the original expression: 6x° + 1x — 15:

e Step 1: Multiply the first coefficient times the last number.

/\\ /\
@x2+ X + @ -90
(B)(-15) = -90

e Step 2: List all the possible factors of the product.

Factors of -90

Factors | Difference
90 -1 89
45 .2 43
303 27
185 13
156 7
1

e Step 3: Select the pair of factors which adds together to give the
needed number of x’s.

+10x - 9x = +lx
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O Step 4: Rewrite the given expression using four terms instead of

three.

6x° +10x —9x — 15

e Step 5: Separate the first two terms and the last two terms. This
makes two groups.

(6x* + 10x) + (-9x — 15)

e Step 6: Take the largest common factor out of each pair of terms.
Make two rectangles.

2x(3x + 5) + -3(3x + 5)

F——3x + 5 ——

T ax+5—

—2x— '3
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0 Step 7: Put the two pieces together. (The two common factors go

together in one new factor.)

F——3x + 5

- Ox -3

Here’s what you write down without using pictures:

(2x - 3)(3x + 5)

6x” + 1x - 15 (6)(-15) = 90

2 90 1
6x” + (10x —9x) — 15 45 2
30 3
2 -9y — 18 5
(6x° + 10x) + (- 9x — 15) e
10 9

2x(3x + 5) + -3(3x + 5)

(2x-3)(3x + 5)

Let’s try one more example. Factor: 4x*—19x + 12:

Section 6: A Shortcut Method
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Solution:

4x* ~19x + 12 (4)(12) = 48
’ 48 1
4x° + (-16x + -3x) + 12 24 2
16 3
(4x* —16x) + (-3x + 12) 1; g

4x(x —4) +-3(x —4)

(4x —3)(x — 4)

Notes: Since our product is positive 48, the two factors will add. Since we
need two factors that add to be -19, we use 16 and -3. Also, when there is a
negative sign on the third term of the four terms, always use this negative as
part of the common factor. If you do not do this, there will be no shared
factor to join the two products together in the last step.

Exercises

Use the shortcut method to factor the following polynomials:

1. 2xX*-7x-15
2. 2x°-3x-5

3. 2xX*+3x-5

4. 2xX*-7x+6

5. 4x*—4x-15
6. 2xX*+7x-15
7. 6x*-x-15

8. 6x*+11x-10
9. 2x*-13x+15
10. 12x*+ 25x + 12
11. 20x° -26x -6
12. 15x* +8x + 1
13. 25x° +30x +9
14. 12x*-7x-12
15. 3x*+2x-5
16. 4x*+8x +3
17. 2% +x-6
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Section 7
Recognizing Special Products

Introduction

The factoring methods discussed so far in this chapter will work for any
quadratic expression which can be factored. Many quadratic expressions
cannot be factored, and they will be discussed briefly in this section. It may
be useful to learn to recognize some special types of quadratic expressions
so that factoring them will be even easier. The special expressions we are
talking about are perfect squares and the difference of two perfect
squares, both of which were discussed at the end of the previous chapter.

Recognizing Perfect Squares

As you will recall from our earlier discussion, perfect square trinomials
have some very specific characteristics which make them relatively easy to
recognize. An example of a perfect square can be generated by multiplying
a binomial times itself, such as
(2x -3y = (2x-3)2x - 3)
= 4 —6x—6x+9
= 4x° - 12x+9

We can illustrate this product with the following diagram.

-6x +9

-4x” ~6x

X - 3

X -3 ——
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From the diagram we can see that both the x* term and the units term are
themselves positive perfect squares. (Do you recognize the perfect square
numbers?) Also we see that there are two equal groups of negative x-bars,
each group being the product of the square roots of the squares.

(2x)(-3) -3

.

| feoe

The fact that the x-bars are all negative tells us that both dimensions of one
of our squares (¥* pieces or units) must be negative. (We generally put the
negative signs on the units square, giving dimensions of (2x — 3), but both
dimensions could also be written (-2x + 3) and the result would still be
correct.)

From this we see that perfect square trinomials always have the following
characteristics:

e The x? term and the units term are always positive perfect squares.
Look for numbers associated with each of these terms which are
perfect square numbers.

e The x term may be either positive or negative, but its value is
always twice the product of the square roots of the other two terms.

If you look for these characteristics when factoring you will recognize a
perfect square trinomial.

4 —12x +9
| Perfect squares

(2x)° (3)°
T~ /

2-(2x)(3
( ‘)( : Twice the product of

12x the square roots

Square Roots
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Once a perfect square trinomial is recognized, factoring it is very easy. The
terms in each of the binomial factors are the square roots of the x° term and
the units term, separated by the sign of the x term.

4x* —12x +9
(2x)* <3\>2
(2x - 3)°

4 - 12x +9 = (2x—3)?

Let’s look at another example. Factor:

9x° + 6x + 1

Is this a perfect square?

9x” + 6x + 1
Perfect squares

(:Jx)Z (1)°
/

~— Square Roots
2 (3x)(1) .
| Twice the product of
6x the square roots

Yes, this is a perfect square. What are its factors?

9%° + 6x + 1

| |

(3x)° (1)

N oL g

(Bx + 1)2

3x +

9 +6x+1 = Bx+1)°

X + 1 ———
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To check your work draw a diagram and/or multiply out your answer
using the FOIL method to verify that the product equals the given trinomial.

3x 1

P
9x 3y

3x + 1

%8x+1—#

(Bx+1)* = Bx+1)Bx+1)
= 9% +3x+3x+1

= 9 +6x+1

Recognizing the Difference of Two Perfect Squares

The difference of two perfect squares is the result of multiplying two
binomials which are the same except for the signs on their second terms.

Different Signs ><

/N

(2x + 3)(2x — 3)

X - 3

— 4x* —6x+6x—9
= 4x* -9

X+ 3
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Our result is one
square (the units)
taken away from an- 5
other square (the x”’s), 4x" -9
with all the x-bars can-
celing out.

From this we see that the difference of two perfect squares should be easy
to recognize when factoring. This is due to several specific characteristics:

e Thex*termisa positive perfect square.
e The units term is a negative perfect square.

e The x term is missing altogether.

There are other expressions which look a little like the difference of two
squares, but if you look carefully you can always tell them apart.
For example:

4x* - 9x
or
16x —25

x—-25

Both of these expressions have two terms separated by a minus sign, and
the number associated with each term is a perfect square number. Still these
examples are not the difference of two perfect squares, because each expres-
sion has an x term, and since x is a bar, not a square, the x term cannot be a
perfect square. (The top example can still be factored, however, by taking
out the common factor of x.)

When you are asked to factor an expression having only two terms
separated by a minus sign, look to see if one term is x pieces and the other
is units, with no x term; and then see if both the x? and the units terms are
perfect squares. If they are, the expression is the difference of two perfect
squares, and the factorization will be quite easy.
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2
16x” - 49 These are all the difference
2_ 4 of two perfect squares
x P
25x* — 1

Once you have identified an expression as the difference of two perfect
squares, factoring is a breeze.

4x* -9 Two perfect squares
(2x)/2 (‘3)2 Square Roots
(2x + 3)(2x - 3) Use different signs
DiffLrent sigllls

Further factoring examples:

16x% — 49 /x2 - %
/]
(x> (7) x> @)
(Ax +7)(4x-7) (x+1D(x-1)

As with perfect squares, recognizing when you have an expression with a
difference of two perfect squares is more than half of the work involved in
factoring the expression. If you don’t recognize an expression right away as
a special type, but you see that it has no x term, place a zero-x in as the
middle term, and then look again:

25x* -1
25x%* + 0x — 1

Ask yourself, “How can I get zero for the middle term?”. The answer is
to multiply two binomials which are the same except that they have oppo-
site signs on the second term. The result must be

(5x + 1)(5x - 1)
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Exercises

Identify which of the following are perfect square trinomials. La-

bel each example as YES or NO. Factor only the perfect square tri-

nomials.

Label the following expressions either PS for perfect squares,

2+ 6x+9
X2 +5x+6
2x* +3x -9
4x* + 20x + 25
9x* + 6x — 1
4x* —4x + 1
6x> +11x +5
x2+8x-9
3x*—5x + 2
16x* —24x + 9
4x* + 21x - 25
4x* - 28x + 4

DTPS for the difference of two perfect squares, or neither. Factor
those labeled PS or DTPS. Do not attempt to factor the examples
that are not PS or DTPS

13.
14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24.
25.
26.

4x* -1
¥+ 1

x>+ 6x+9
x> -9
4x* — 6x
9x* + 12x — 4
4x* —12x + 9
9x -1
16x* + 8x + 1
25x% — 4

x> -5x+6
x* = 10x + 25
4x* +9
4x* - 25
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27. x-4
28. x*+6x—16
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Section 8
Expressions Which Cannot Be Factored

Introduction

Using the chips, factoring means to form a rectangle from the given pieces,
with no missing pieces and no pieces left over. For many groups of pieces,
making such a rectangle is not possible. For example, try making a rectangle out
of these pieces:

X’ +3x+6

Or these

L1
1]

2% + 7x + 4

Actually there are many more expressions which cannot be factored than
those that can be factored. So if you are faced with a tough factoring
problem, try all the approaches you have learned, but realize that not
factorable is a possible answer.
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Remember: Look for Common Factors First

Perhaps the most often forgotten step in factoring is to always look for
common factors first. Removing a common factor will always simplify an
expression and will sometimes turn an apparently impossible problem into

an easy problem.
For example, factor:

18x* -8
2(9x% - 4)

2(3x +2)(3x —2)

3x% — 24x + 48
3(x* — 8x + 16)

3(x — 4)?

3x> + 15x% + 18x
3x(x* + 5x + 6)

3x(x + 2)(x + 3)

Common Factor

Difference of Squares

Common Factor

Perfect Square

Common Factor

Factor

The Sum of Two Squares

Perhaps the type of expression most often mis-factored is the sum of two

squares.

x2+4
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Using chips it may be obvious that no rectangle can be made from the pieces

given. But students often try to suggest the following:

X +d = (x+2)(x+2) (Not True !!)

Missing terms

Although the above suggestion may seem reasonable, the picture illus-
trates that there are terms missing which are needed to make a perfect
square. If the units square (the +4) were negative, then the two missing
terms would have had opposite signs and would have canceled out. But if
the units square is positive, the missing terms must both have the same sign,
and therefore they can’t cancel.

This is why we can'’t factor the sum of two squares, but we can factor the
difference of two squares.

Exercises

Factor completely if possible.

3x% + 15x + 18
4x* +9
2x* - 18

3x% + 18x + 27
x> -3x+5
x2+4x -5
3x*+2x -5
2% +5x + 6

4x* —24x + 9

© ® NS m kDN
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10.
11.
12.
13.
14.
15.
16.
17.
18.

2x* + 16x + 32
5x* - 20
4x* — 9x
3x% + 12

X+ 237 + x
x> +6x+5

x> +5x-6
X+ 7x-6
18x” — 8x
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Quadratic Equations




Section 1
Introduction

Polynomials and Quadratic Expressions

In the last two chapters we have worked with polynomials. We have learned
about terms, combining polynomials, and factoring. The terms in any poly-
nomial expression can include units (small squares), x’s (bars), ? pieces
(large squares), o pieces (cubes, which we don’t have in our kit), and higher
powers of x (like x4, x5, ).

When a polynomial expression contains x pieces (large squares), but
does not contain any higher powers of x, we call the expression a quadratic
expression. Expressions having combinations of squares, bars and chips are
called quadratic expressions is because they can be represented using flat
four-sided figures—squares or rectangles. The prefix “Quadri” means hav-
ing four parts, in this case four sides.

In a similar way, expressions having only x’s and units are called linear,
because they can be represented using lines; and expressions having x”’s as
their highest term (biggest piece) are called cubic, because they can be
represented using cubes.

Linear

Quadratic

¥+5x+6

2x°

Cubic
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Just as a quadratic expression is an expression having xz—squares as its
biggest piece (highest term), so quadratic equations are equations having
x2—squares as their biggest piece, along with some combination of x-bars
and unit-chips. Some examples of quadratic equations are

¥+2 =3x+6

¥’—-6x+8 =0

2%° -7 = ¥ -T7x+1

These are all equations having x° as the highest term. As with all equations,
each statement says that the quantities on the left and the right of
the = (equal) sign have the same value. However these statements of
equality will only actually be true for certain values of the unknown (values
of x). To be sure you understand this idea you should try guessing a value
for x which will make one of the given equations into a true statement. For
example, look at the first equation:

¥+2 =3x+6

If we guessed that x might be 3, we would get

(32 +2 = 3(3)+6
9+2=9+6
11 =15 (Not true)

B¥ + 2 = 33 + 6

11 = 15

This is obviously not true because there are 11 units one the left and 15 units
on the right side.
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However, next we might choose to try x = 4; this would give us

(47 +2 = 3(4)+6
16+2 = 12+6
18 = 18
47> + 2 = 34 + 6
18 = 18

This is true. Since x = 4 makes this equation true, we say that one solution
for the equation is

x =4

The purpose of this chapter is to learn how to find the correct solutions
(values of the unknown) to quadratic equations without guessing ! It’s like a
puzzle, where the real values required for the unknown are hidden within
every quadratic equation, and your job is to solve the puzzle and find the
true solution—the value of x. The puzzle-solving process isn’t very hard; it
is based upon ideas that you already know from previous chapters.

Exercises

Decide if the following items are expressions or equations. Then

decide if they are linear, quadratic, or cubic:

1,000,000x + 17
x* =25

x>+ 3x +2

23 +32x + 2x% + 3x° = 27

L S
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Section 2
The Zero Product Rule

Multiplying and Zero

There is a very simple fact which is used with astonishing power for solving
quadratic equations. This fact, which you already understand, is that when
two numbers are multiplied together the answer is never zero unless one of the
numbers being multiplied is zero. Let us illustrate this. Look at the following
products of two numbers:

B)2) =6

1

S4=2
(-3)(+5) = -15
2) (_3)_ .2
“3)'\"5) " 75

0)(7) =0

If we multiply any two positive numbers, negative numbers, whole num-
bers, or fractions, we always get a positive or negative whole number or
fraction for an answer, unless we multiply by zero. If we multiply by zero
we always get zero for an answer; and any time we get zero as the answer to a
multiplication, then one of the multipliers must be zero. If you know that:

®)3) =0
then x must be zero (since 3 can’t be zero). If you know that
()(x—-4) =0
then either one or the other of the two parentheses must be zero. Either

x=0 or x-4=0

In such a situation, there could be two possible values for x:

x-4 =0

x =4
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Perhaps you have already recognized how this relates to quadratic equa-
tions. If we have a quadratic equation like

X —dx =0
rather than guessing what values of x will make this a true statement, we

can get the correct solutions for x very quickly if we can factor the expression
on the left side of the equation:

¥—4x = 0
()(x-4) =0

So either:

or

Using chips, this equation would look like:

Obviously, if the areas of the pieces on the left combine to make zero, then
the positive area (the square), must be canceled out by the negative area (the
bars). The question is, what number must x (the length of the bar and the
side of square) be for these areas to really cancel?
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We find out by factoring, or making a rectangle.

|
0

X

|

X -4

The area of this rectangle will only be zero if either the height is zero or the
width is zero. The height will be zero when x = 0. The width will be zero
when x = 4. Substituting these values into our picture we have:

=0 or

Both are true, and no other value for x will work. (Try some.) Substituting
these values numerically into the original equation gives:

0)>-4(0) = 0 4 -4(4) = 0
and
0=0 0=0
Here is a second example:
X—6x+8 =0

If the total area is zero, then the white pieces must cancel out the colored
pieces. What size must x be to make this happen? We factor (make a

rectangle):

P
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Now we can see that the height would be zero if x = 2:

_ U
— [

This would give:

Similarly the length would be zero if x—4 = 0, which means that x = 4:

|
LI

The picture would now be:

I [ [
N

FE O

which is also true. Here are the steps with algebra symbols alone:

The equation Y-6x+8 =0
Factors into x-2)(x-4) =0
Using the zero product rule:] x—-2 =0 or x-4 =20

Gives two solutions: x=2 or x=4
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Numerical substitution of these results into the original equation gives:

(2> -6(2)+8 = 0 (4% - 6(4)+8 = 0
4-12+8 =0 16-24+8 = 0

Quadratic equations have at most two solutions for the value of the un-
known. When the pieces are factored into a rectangle, either the height or
the width of the rectangle can be zero. We get two answers because our
figures (rectangles) have just two dimensions (height and width). The high-
est term of a quadratic equation is x°, where the exponent 2 literally means
two dimensions, giving two possible solutions. (Similarly, linear equations,
where the highest term is x, have at most one solution, as seen in the
equations chapter. Cubic equations, which have an x° term, have up to 3
solutions.)

It is possible that the two solutions to a quadratic equation will be the
same. For example, find the solutions for

¥—6x+9 =0

¥ - 6x + 9

Factoring, we find that we have a perfect square:

R iy B
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Either the height or the width can be zero, but since the height and the width
are equal, our two resulting solutions are both the same:

Numerical substitution gives

(32-6(3)+9 =0
9-18+9
0=0

. . 2
Here is an example with more than one x™:

2% +x-3 =0

This factors (with the addition of +2x and -2x) into

2x+3)(x—-1)

| Ox + 3 |
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In this case the zero product rule gives us:

2x+3 =0
x—-1=20
2x = -3 or
x =1
_ 3
Y="5

2
2[—%} +(—%j—3=0 2(1)+(1)-3 = 0

2
9 3
2[1] _[Ej_3:0 2+1-3 =0

Exercises

Solve these quadratic equations:

*-6x+8 =0
X*-8x+16 = 0
X*"8x+12 =0
X*-7x+12 =0
2x*-9x + 9
33> -8x +5 = 0

3x*-16x+5 =0
2 —1lx +12 = 0
3x-13x+12 =0
xX*=10x +21 = 0

5 ® ® N @k wBDdDR
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Section 3

Standard Form

x> —4x = -5
+5 +5
X —4x+5 =0

Changing the Form of the Equation

If we are going to use the zero product rule to help solve a quadratic
equation, then the first thing we must do is to be sure that one side of the
equation is zero. This will allow us to factor the other side of the equation,
and then to set each of the factors equal to zero. For example, if we have an
equation which starts out as

¥ —4x = -5

[ L]
- U4

we must get one side of the equation to be zero. We can do this easily by
adding 5 to both sides of the equation:

L[]
= b

L] L]
O] O]

1]
1]
]
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Now we are ready to factor the left side of the equation and to set the factors
equal to zero, as demonstrated in the last section.

When we write a quadratic equation showing the x %_term first, followed
by the x-term and the units-term, all equaling zero, we say that the quadratic
equation is in standard form. Standard form is shown as

Ax¥’+Bx+C = 0

where A, B and C represent numbers, and x represents the unknown. (A and
B are called coefficients of x* and x respectively; coefficient means the
number multiplying an unknown.) So if we have an equation like

2¢° +7x+5 = 0

wewouldsayA =2, B=7, andC = 5.

In the equation:

X¥*—4x+5 =0

/

A=1, B=-4, and C=5.

we can see that the coefficient may be implied (1 in 1x2) or negative (4 in
—4x). B is 4 because we can write —4x as + (*4)(x).

It is important to note that in standard form all of the terms of a quadratic
equation are in a particular order, with the highest term (x ) first on the left,
the x-term in the middle, and the units-term last, followed by the equal sign
(=) and the zero (0).

This order of terms is called descending order because the size of the
pieces (the power of x) starts with the largest term (highest power) first on
the left, and then decreases (descends) as we move to the right. It is standard
practice to arrange all expressions in descending order. Keeping this order
consistent makes it easier to recognize and combine like terms; it also makes
it easier to factor.

If a quadratic equation starts out written in some form other than stand-
ard form, we must first rearrange the terms until we have the standard form
before we can proceed to the solution (find the value of x). So equations like

¥+2 =3x+6
and
2%°-7 = ¥*-7x+1

need to be rearranged and put into standard form before they are factored
and solved. As mentioned earlier, this is done by adding to both sides until
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u= one side (usually the right side) equals zero, while combining like terms and

arranging the other side in descending order. For the above examples the
% process looks like this:
(BN
Beginning ¥+2 =3%+6 = — 0o
O Ofd
Add Opposites ¥ +2 =3%+6
3x-6 -3x-6 = = ===
T T ‘
utg ad
00gd 00d
Standard Form X*—-3x—4 =0 0o _
I 0
Beginning 237 = 2-7x+1 = o
Add Opposites 27 = 2 —T7x+1 .
5 2 oog — o
X" +7x-1 —x"+7x-1 : * * *
O O
g = 0

Standard Form x*+7x—-8 = 0
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The Flip-Chip Short Cut B8

When rearranging an equation into standard form we get rid of all of the

pieces (terms) on one side of the equal sign (=) by adding their opposites to
both sides:

oo = g Add Opposites
f ¢ * b |

0 O

oood = ()

oooo Standard Form

In this process of adding opposites, the equal sign is like a dividing line
between the two sides of a balance, and adding the same amount to both
sides gets one side to equal zero while maintaining the balance. Notice that
when one side gets canceled out, the opposite of each of its terms appears
on the other side (across the =).

Opposites

So as the pieces disappear from one side of the equation, the same pieces
appear in flipped over form (with opposite signs) across the equal sign, on
the other side of the equation. But this is just the same as taking the pieces
we are canceling and, while moving them across the equal sign, flipping
them over.

ooogo —

DD'—D}_/ o
| o Flip 0

oooo —

oooo - O
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You can move pieces (terms) across the equal sign as long as you flip them
over (change their sign) when they cross over from one side of the equal (=)
to the other. This is equivalent to adding the opposite of the term to both
sides.

Like all short cuts, you must be very careful with this one when you use
it. In particular, be sure not to flip terms without reason. Pieces flip (change
sign) only when

e They are multiplied by a negative.

e They move across the equal sign.

Exercises

Arrange these quadratic equations in standard form. Do not solve.

1. 6 = 5x—x?

2. 3x*-2x = 5x+2x"—-12
3. x*+12 = 1lx -

4. 2x*—6x = x¥*-8

5. 3+3x" = 10-5x+x°
6. 2+x*—2x = 20 + 5x
7. 8x-1=-3x"-6

8. 3x'—6x+2=2x"+4x-19
9. x*-5 =24+ 16x

10. 2x°+5x = 14x-9

11. x2x-3) =5-x

12. x¥*-5=3Q2x+1)

13. x+8 =7-2x

14. (x+2)(x-5) = 3-2x
15. 2x(x-2) = 17
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Section 4
Factoring Quadratic Equations

Quadratic Equations Having Positive x-bars

In section 2 of this chapter we gave several examples of quadratic equations
which had negative x-bars when they were written in standard form. Now
we will look at other types of quadratic equations.

For example, let’s factor and solve this quadratic equation:

X + 5x + 6 - 0

All the chips are colored side up, so how can we get zero for their sum? We
know the factors are (x + 2) and (x + 3):

X+ 2
I
-]

X+ 3

This means the height and width will be zero if

x+2 =0 x+3 =0
2 2 O -3 -3
x = -2 x = -3

=[] or

Il
L]
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When the x-bar is replaced by any number of negative chips, the S square
will still be positive. This is because both dimensions of the square will be

negative (two flips):

(22) = +4

So we can replace the x-bar with -2 and the x> with +4, or we can let the x-bar
be -3 and the x*be +9, giving:

These are both equal to zero.

Substituting these results numerically into the original equation gives:

(2> +5(=2)+6 = 0 (3> +5(=3)+6 = 0
4-10+6 = 0 9-15+6 = 0

Both answers are correct: x = -2 and x = -3.
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A second example is

2¢* +7x+5 = 0

24 + 7x + 5 = 0

We can factor this, with the result

x+1D2x+5) =0

-— X + ] —
|
o

X + 5
This time:
Either x+1 =20 or 2x+5 =0
x =-1 2x = -5
x=_2
2
319
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We can picture these results in the following way:

2x 5
o
2XZDD\I\I\I

5x

The fractional result can also be demonstrated, but it requires care. Remem-
ber that each x is - %:

= E 212 —

I VS —

2x

\IMIHDDDDD5

ST,

Rearranging shows the positives match the negatives, so the total is zero:

2 _° —
2x 5x 2x

gl (e - o
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Numerically this result can be checked by substitution:

2
1 1
2(—2§J +7[—2§ +5 =0

25 5
Z(Zj+7(—2 +5 =0

1 1
125—17§+5 =0

Quadratic Equations Having Negative Units

When a quadratic equation in standard form has negative units, we handle
it in a way similar to that shown above. For example, consider the equation:

¥ +5x-6 =0

To solve this equation we factor by adding one positive and one negative
x-bar, as shown.

I

\

X1

e
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This gives

(x=1)(x+6) = 0.

As before, the quadratic expression on the left will equal zero if either the
height or the width of the rectangle is zero, which requires that

Either x—1 =0 or x+6 = 0
+1 +1 -6 -6
x =1 x = —6
=[] =
=[] ==

Substituting these values into our diagram we get

X
x % [T TI0]

-6
OOo0d
o
, 0000000 =0
X 6x
6x

2
X

If you count carefully, you will see that both of the solutions do give zero for
their results.
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Numerically we can check our solutions by substituting the values for x into u=

the original equation:

X>+5x—6 = 0
x =1
(1> +5(1) -6

1+5-6

X>+5x—6 = 0
X = -6
(—6)* + 5(—6) — 6

36 -30-6

Both solutions make the original equation true. (Will any other solutions
work? If you think they will work, try checking your suggested solution
using chips and using numerical substitution. Work carefully.)

So now you know how to solve any quadratic equation which is factorable
when put into standard form. A summary of the steps required is:

e Put the quadratic equation into standard form:

Ax2+Bx+C =0

e Factor the quadratic expression on the left side of the equation.

e Use the zero product rule to set each of the factors equal to zero,

giving two linear equations.

¢ Solve each of these linear equations for the unknown, giving two

possible solutions.

e Check these two solutions by substituting each value for the un-

known in the original equation .

Exercises

Solve each of these quadratic equations, giving both solutions.

Check your work.

X*-5x+6 =0
2 +5x -7 =0
X*-6x+8 =0
3¢ +8x+5 = 0

xP = 2x+8

ok B
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11.
12.
13.
14.
15.

2x* +9 = -2x° + 12«
3x* + 6x = 2x° - 3x -8
X -4 =-x*-7x-10
X +2x-15=0

¢ -3x-2=0
X*+3x =5-x
6x(x+2) = x+10

x> +15x = 3(x—9)

2x* - 6x = 5(x —3)
-1 = 16(x—4)

Chapter 11: QUADRATIC EQUATIONS



Section 9
Completing the Square

Quadratic Equations that Won’t Factor

Now that you can solve any quadratic equation which can be factored, you
might not wish to know that there are more quadratic expressions which
cannot be factored than there are expressions which can be factored.

But do not fear; in this section and the next we are going to learn a
method which will allow us to solve nearly any quadratic equation,
whether we can factor it or not. To do this we will use another obvious and
simple idea:

e Iftwosquares have equal area, then their sides are also equal. (The
length of the side is the square root of the area.)

This method is called completing the square.

Translated into an example using chips, this means:

If 2 squares are equal in area,

Then their sides are equal in length.
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In symbols, if

(x+2)7 = @

then

x+2 =4

This idea shouldn’t seem too hard. There is one extra twist: if the square on
the right has 16 positive units in it, there is the possibility that its sides can
be either +4 or -4, since either possibility will give the same number of
positive units in the square.

So we include both possibilities by saying that if

(x+2) = (4’

then

x+2 = tdor4

The two options +4 or -4 are usually written in a shorthand form as £ 4:

x+2 =4

where the symbol + is read plus or minus; it means that there are two
answers, both of which are equally valid.

Now that we see how the situation works with the equal squares, let’s
use this idea to solve a quadratic equation. We’ll begin with this equation:

¥+4x-12 = 0
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Even though this equation is factorable, let’s pretend that we can’t see the
factors, which means that we can’t use any of the methods we have learned
so far to solve for the unknown (x). We are going to follow a different
approach; we are going to rearrange things instead of factoring.

First we are going to get all of the units away from the x* and x terms on
the left side of the equation by adding 12 units to each side.

+12 +12

This gives

Next we arrange the x* and the x-bars on the left side of the equation into a
form which is as close to a square as we can get without having any units.
To do this we put half of the bars above the square, and half of the bars
beside it on the right:

Bars are half above,
// half to right
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Finally we add enough unit chips to each side to complete the square on
the left; we can see that four (4) chips will be required.

+4

+4

This gives us a picture we have seen before.

X o+ dx  +4 = 16

We have two squares that we know are equal, so their sides (square roots)
must also be equal.

-~ X+ P ]
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Now we see that if

X+2 =+

then, adding -2 to both sides gives us:

or

xX+2-2=4-2

x+2 =-4

xX+2 =4

N/
/X
|

]
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Here we have the two possible solutions for our original quadratic equation.

= To check them we can substitute these solutions into the original equation,
% either using chips or using numbers.
. We started with:
= 0
5 BN B I | .
X + 4x — 12 = 0
Now we know that either
x =2 or X =6
_ U _H
— |:| — .
SISISIS =0 =0
2y + 42) - 12 = 0 (-6 + 4(-6) — 12 = 0
4+8-12 36-24-12
0 0

330 Chapter 11: QUADRATIC EQUATIONS



Both solutions check. (If we had done this problem by factoring would we
have gotten the same result? Try it and see.)

Summary of Steps

The method of completing the square which we used to solve this example has
several specific steps. So far these steps are:

Arrange the quadratic equation in standard form.

Move the units (chips) across the equal sign by adding their oppo-
site to both sides.

Now that the xz-square and the x-bars are isolated, use them to-
gether to make a figure as close to a square as possible. Put half of
the bars above the square and half of the bars beside the square.
Because you have no units, there will be a square hole in the
corner.

Add enough units to both sides of the equation to complete the
square begun by the x% and the x-bars. Across the equal sign, also
make the units into a square, or as close to a square as possible.

Take the square root of both squares by noting the length of their
sides. Remember that the side length of the units square can be
either + or - its square root.

Set the square roots of the expressions equal to each other.
Isolate the unknown (x) on the left side of the equation by adding

the necessary positive or negative units to each side of the equa-
tion. This gives the two solutions for x.

Another Example

Let’s work through a second example. (This time we will choose one that

x* — 6x — 5 =

really can’t be factored.)

Section 5: Completing the Square 331




This expression can’t be factored, so we work through the steps outlined

it

| = 0
X*—6x-5 =0
+5 +5
| |
X¥—6x =5 —

above:

X*—6x+9 =549 = |

(x-3)* = 14 —

(x = 3) on each side
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The units on the right cannot be arranged into a perfect square without ==
cutting some of them into smaller pieces. But if we imagine trimming some
of the unit squares so that we can make a nice square having exactly 14 units %
in it, we already know how to express the length of the side of that square— A
the side will be V14.
\/T4 From the picture, we can
estimate that the V14 is
between 3 % and 3 V7.
\14.
We continue with completing the square:
™ = (x-3)* = 14
|
X
Xx-3 — o
T = or x-3 = +14
EEEE B 43
x =3+\14
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== Note that the diagram might be interpreted in a different way:

it

— T

x+3 = +V14 L= T
Flipping both sides over (multiplying by -1) gives:

“1Cx+3) = - 1(x\14) EEEE

| [T T1=
x-3 = +\14 [T T T]

This will obviously have the same result as before.

It may not feel totally comfortable to you to have answers like

x =3+\14

From the pictures we can see that this means approximately

x is about 6 > =
7 or
5

OI‘—; |:|

For more exact values we can use a calculator to get a decimal value for 14:

V14 = 3.7417...

This means that

x = 3+ V14 = 3+3.7417 = 6.7417
or

x = 3- V14 = 3-3.7417 = -0.7417
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These answers are not nice round numbers. This shows that the method of
completing the square can be used to find solutions for quadratic equations
which don’t have simple integral factors. To check our answers for this
example, it is easiest to use a pencil and paper and a calculator to substitute
these values into the original equation. (Be sure to write down everything
you are doing as you are entering numbers into your calculator so that you
don’t get lost half-way through the operation.)

x> —6x—5=0

0.0003 0.0003

x = 6.7417 or x = -0.7417

(6.7417)? - 6(6.7417) =5 = 0 | (- 0.7417)> = 6(- 0.7417) =5 = 0

If we use even more accurate decimal values for 3 + V14 we will get results
which come out even closer to being exactly zero.

You have learned enough of the process of completing the square to have
a good start. Try your hand at using this new method to do the following
problems on your own. Use your chips and a scratch pad to do these
exercises. Check your results, using a calculator if necessary.

Exercises

1. xX*+6x-7=0
2. xX*-4x-5=0
3. xX*+8x =9

4. x> =10x+16

5. x*+15x = 3x-20
6. xX*+10x+18 = 0
7. X+6x-9=0

8. X +14x = 2x—11
9. x*-5x =23x+3
10. x*—10x = -17
11. ¥-3x-5=0
12. ¥*-5x+2 =0
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W=

Section 6
Equations with More than One x?

Beg¢inning With More Than One x?

When we begin with a quadratic equation in standard form which has more
than one x> we must add one additional step to our methods for completing
the square. Let’s begin with

3 -6x-7 =0

3% —b6x -7

It will not be possible to make a perfect square using the x*’s and the x-bars,
since there is no way to arrange three x”’s into a square. To deal with this we
take Y4rd of all the terms on both sides of the equation, so that we are left
with only one x°. (One way to describe this is to say that we divide by the
coefficient of x°.)

This gives:
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Don’t let the fraction scare you; from here we proceed just as we did in the u=
last example. Since we can’t factor, we move the unit chips to the other side

of the equation (remembering to change their sign when they cross the
equal sign).

— 1
= [IT 2oy =2~
3
Now make the square
]
/s
[]
= [
— 1
= [T TT (x - 1)2 - 3=
3
Taking the square root of both sides we get:
— 1
- x—1==x\N3+
3

This is more commonly written as
x-1 = i\/—%o_

(It is hard to draw a picture of the square root of 1%, but it is just the side of
a square having 34 units of area inside it.) Using a calculator we find that

V% = 1.8257
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H
=
2x° +5x—4 = 0

SO

x-1 = £1.8257

Adding one to both sides gives

x = 1+1.8257
or
x = 1-1.8257
x = 2.8257
or
- 0.8257

Use your calculator and check these results in the original equation.

Summary of Steps

To accommodate equations which begin with more than one x* when in
standard form, we must add one more step to our procedure for completing
the square. Now the procedure will read:

e Arrange the quadratic equation in standard form.

e Ifthe first term has more than one x2, divide all terms on both sides
of the equation by the coefficient of K2, leaving only one 2.

e Move the units (chips) across the equal sign by adding their oppo-
site to both sides.

e Proceed as before.

A Final Example

Here is one final example:
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First divide each term by 2 (multiply by 4), to leave just a single 2.

1 SR SN |
2 T 2 )

This leaves:

5
—_ 2——:
T = 0 47 x-2=0

Moving the units across the equal sign we have:

= [ 24

N | O
R

[
N

To make a square from the left side of the equation, we have to cut the (%2)x
into two equal pieces, so that one can go above the large square and the
other can go beside the large square. Again, don’t let the fractions scare you.
Half of (%)x is easy to figure out:

15 ) 5
212 T4

The figure which results looks like this:

-~ X —»15/4«%

5/4

T
x = [
]
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This time the number of unit chips required to fill in the corner of the square
will be a fraction. The square corner to be filled in is (% - %4), so the required
amount will be

| Q1
Il

»—\|I\J
N O1

| G

25
/Eﬂ/7 16
Wi

1

1]

This gives

9
34 (T

Although our results will be fractions, the process of taking the square root
is no different than before.

59
T4 7716 " 16

5 57 57
X+—- == E:iT

Adding -% to both sides gives

5 57
X=—2rt

4 4

which can also be written (since the two fractions have the same denomina-
tor) as:

—5++57
X=—F
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Using a calculator this comes out to be

 —5+7.5498

B 4

x = +0.6375

or

-3.1375

Use your calculator to check these results as shown below, and then con-
gratulate yourself for working through such a challenging problem.

Check:

2% +5x—4 = 0

x = 0.6375 or x = -3.1375
2(0.6375)% + 5(0.6375) -4 = 0 | 2(=3.1375)%*+5(=3.1375) -4 = 0

0.0003 0.0003

Does it check out?

Now we will review the steps in this process, then you can try some more
problems on your own. Have chips, a scratch pad and your calculator close
at hand and work carefully.

e Arrange the quadratic equation in standard form.

e If the first term has more than one x2, divide all terms on both sides
0; the equation by the coefficient of x* which will leave only one
x°.

e Move the units (chips) across the equal sign by adding their oppo-
site to both sides.

¢ Now that the xzpiece and the x-bars are isolated, use them together
to make a figure as close to a square as possible while having no
units, by putting half of the bars above the square and half of the
bars beside the square.
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Add enough units to both sides of the equation to complete the
square begun by the x? and the x-bars. Across the equal sign also
make the units into a square, or as close to a square as possible.

Take the square root of both squares by noting the length of their
sides. Remember that the side length of the units square can be
either + or - its square root.

Set the square roots of the expressions equal to each other.
Isolate the unknown (x) on the left side of the equation by adding

the necessary positive or negative units to each side of the equa-
tion. This gives the two solutions for x.

Exercises

342

Solve for x by completing the square:

1
2
3
4
5.
6
7
8
9

10.

X +10x-24 =0

X +6x-4 =0

2x* =20 = x* -8«
2x* —6x = 2x—11
2x°-8x -6 = 0

33 -12x+9 =0
3x*-1lx = x-5
45 - 9x = x> +6x-6
2 +7x -8 = 0

¥ —8x-10 = x —x°
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Section 7
Imaginary Solutions

The Square Root of a Negative Number

There are still some quadratic equations which we cannot solve, even when
using our new methods. These equations involve situations where we have
a perfect square equaling a negative number. For example:

i

T = [9

IR VA B —

The reason we cannot solve equations like these is that we have not defined
any square roots of negative numbers. Square roots (the sides of squares)
must be equal, by definition, and there are no two equal numbers that
multiply together to give a negative area.

3 e (+3) - (+3) = 49
\ +9 \ +9 (=3) - (=3) = 49

. 3 . 3

Because of this problem, we are going to invent a new type of number which
we will only use for the very special purpose of solving these equations.
(Later math courses will have more uses for these special numbers.) We will
call these new numbers imaginary, because they won't be positive and they
won’tbe negative and they won’tbe zero; in fact they may not seem to really
exist at all except within our imaginations, hence the name.
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u= Imaginary numbers will be like chips flipped only half of the way over, or
standing on edge; they aren’t plus and they aren’t minus.

(BN
+1 1 -1
We call the unit imaginary number i, and we define i by the equation
i-1=-1 %
or 1 -1
2
1-=-1 ‘
o i — -
Another way of saying this is
i=1
Two imaginaries multiplied together will give two half flips, or one whole
tlip, which is the same as a minus (-) sign.
i -i
+1 -1 +1
+1 +1i (1i)(1i) = -1 (Di = (D) = (1) = +1
(no flip) (half (whole flip) (1Y% flips) (two flips)

Compared to imaginaries, the other regular numbers (which we have been
working with up until now) are called real numbers. Real numbers and
imaginary numbers can only interact in certain ways.
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Adding and Subtracting with Imaginaries H

We cannot combine real and imaginary numbers because they are different

kinds of chips (in geometry, we would say that they are on different planes).
A real number and an imaginary number cannot cancel or add together. They must
stay as separate terms.

o h-af-

If we multiply real and imaginary numbers, the unit imaginary (i) acts very
much like a sign (plus or minus) rather than like a number. The numbers
multiply together, making a rectangle as usual; and the imaginaries (i) and
negative signs (-) tell how many half flips or whole flips the rectangle goes
through. Each i makes one half flip; each negative sign makes one whole flip.

) @)0) = 6
S S/
r/ / / / No flips

—
AN
N

(2)(3) = 6i

e vl halfi (no) (hal
2\1 / {/ e (ﬂijJ (ﬂipj_)(ﬂiplj
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(2i)(3i) = -6
/T \

half) (half whole
flip|| flip | ~| flip

(2i)(=3) = —6i
/

half) (whole 11
flip)| flip |~ | flips

(1 hal

flip

(2i)(=3i) = —(~6) = +6

i

f\( 1whole IR 2 whole
+ 1 half flip flips

At this stage we will just introduce the idea of imaginary numbers, but you
will learn more about them and work with them more in Intermediate

Algebra.

346
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For now we will use imaginary numbers only to describe the square root of
negative numbers. Such results will be written as shown below:

31

V-5 = iW5

N5 | -5

iN5
Notice that we write the symbol i after a number but before a root.

This notation will allow us to give solutions in situations such as the
example shown earlier:

- r
X 9| | 91
|

The solution will look like this:

(x+27% =-9
x=2 = +V9
x—2=%3i

x=2+3i
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u= Worked out from the beginning, a quadratic equation of this type will look

something like this:
EEee
X2 —4x+20 =0 = 0
X —4x = 20 B
X —4x+4 =-20+4 — ﬁ
(x-2)* = -16
-2 41
+ Or —
x—2 = +4f [C—TIT] = % ( )
x = 2+4i — = m%ormﬁ

It is often more of a challenge to check a solution having real and imaginary
terms than it is to find the solution. One method of checking your results is
to work carefully backwards through the problem. To check by substitution,
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the procedure is the same as we have outlined before; just substitute the ==
solution values one at a time into the original equation and simplify. Here
we will show the check for one solution of this example. You may wish to
try checking the other solution.

x> —4x+20 = 0 x = 2—4i

(2 — 4i)* — 4(2 — 4i) + 20

(2 — 4i)(2 — 4i) + (—4)(2 — 4i) + 20

4 — 8i — 8i + (—4i)(—4i) — 8 + (=4)(—4i) + 20

4-161-16-8+16i+20 =

4-16-8+20-161+ 161

—20+20+ 01

I
-}

We will avoid more difficult examples using imaginary numbers in this text.
If you continue with further studies of mathematics, you will work with
imaginaries again and this introduction will help guide you then.

Exercises
Solve for x:
1. x¥-6x+25=0
2. ¥ -10x+34 =0
3. X +4x+5=0
4. ¥ +8x+20=0
5. X +6x+15 =10
6. ¥ -2x+12=0
7. 2xX*+6x = x*—6x-37
8. 23-x" = 8x-2%’
9. 2% =x+4x-11

¥ +6x+12 =0
x*—5x = 5x—33

X +3x+1 = 5(x+4)

=R =
N =o
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Section 8
The Quadratic Formula

Introduction

We have learned to use the method of completing the square to solve any
quadratic equation. Once the equations are written in standard form we
simply follow the list of specified steps until we reach the solution. Since
these steps are always the same, we can use them to write a formula for the
solution to any quadratic equation written in standard form. We can use this
formula, called the quadratic formula, to solve any quadratic equation
without going through all the steps of completing the square every time.

Deriving the Formula

To derive the quadratic formula we will begin with the standard form for
all quadratic equations:

AP +Bx+C =0

A, B, and C represent the number or coefficients in the equation; we will
perform the steps of completing the square with these variables instead of
with the numbers. Reviewing the steps for completing the square, the first
thing we do with an equatlon in standard form is divide through all terms
by the coefficient of x%; s0 in our formula we first divide each term by A.

2 (B L[] -
X"+ ( A] X+ ( il 0
We will call this form of the quadratic equation the simplified standard
form. Equations which begin with only a single x” start out in this form, and
all other quadratic equations can be put into this form as soon as we begin

working toward the solution. To make the simplified standard form easier
to read, we will substitute new letters for the fractions:

B
Z_D

[0
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Now the simplified standard form of the equation reads: u=

¥+Dx+E =0

Now we can easily use both pictures and symbols to derive the quadratic
formula.

2
X Dx X¥*+Dx+E =0
E|l = 0
x° Dx
= |-E x* + Dx = -E
D
= 2
2 D

2 2 2
X . 2 D__D__
= |-E x+Dx+4 = E

combines
into

_ D*-4E
-4
- e D YD -4E
2 2
D B
-~ X+ - E@EA
B 2
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Isolating x, we get our solution in its general form.

-D ND?-4E
X=—t——
2 2

Since both fractions have the same denominator, we can combine the frac-
tions into one, as follows:

X

_ -D=VD-4E
= 2

where D = B and E =

This formula will give the solution to any quadratic equation if the equation

is written in simplified standard form or standard form, and then the values

of D and E (or A, B and C) are substituted into the solution shown here.
Let’s use the formula to do a few examples. Solve the quadratic equation

¥+6x+5 =10

In this equation D = 6 and E = 5. Substituting these values into the quadratic
formula, we find

2
—-6+V36-20
X =—""——/—"—/—
2
—6++16
X = ————
2
-6+16
X = ———
2
_ —6+4
Y=
_ —6+4 _—6-4
X = > or x——2
_ 2 _-10
X = > or x = >
x=-1 or x=-5

Check these solutions for yourself to verify that they are accurate.
For quadratic equations where the solutions are integers, the quadratic

formula may not save much time in getting to the answer, but for more
difficult solutions the formula can save a lot of time.
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Solve for the unknown in this equation. Use your calculator to reduce your
answers to decimal numerical form:

¥ -5x-3 =0

This time D =-5 and E = 3.

~(5) £ V(-5 - 4(-3)

X = >

5+\25+12

X=—"—
2
NESE

2
x = 554138 or x = -0.54138

Here is one final example:

2% +3x+8 = 0

This time D =34 =1.5,and E =% = 4.

~(1.5) + V(150 — 4(4)
2

_ -15+\225-16
re 2
~1.5 +V-13.75
X = —F——
2
_ -1.5+iV13.75
r= 2

Exercises

Solve the following equations using the quadratic formula. Do
some of the problems by factoring or completing the square and

compare your results.

1. ¥-5x-3=0

2. 2°-7x =X +6

3. 2°+6x+3 =0

4. x¥-5x-2=-x"+3x-1
5. ¥-3x+5=0

6. X-x+6=0
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

32 -5x-2 =0

5% —6x—4 =0
3x*—8x+5 =0
2°-7x+6 =0
(x+3)° =12
X +7x+3 = x(2-x)
X —4x = 8

3 +2x-1=0
X —5x = x—13
dx(x+2) = 1
2x(x—-1) =5
20 +x =7

X’ —8x = 25
X —4x+5 =0
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Section 1
Related Numbers

Related Pairs

In this chapter and the next we are going to discuss pairs of variables which
are related to each other. For example, consider two variables where the first
variable is x and the second variable is 2x + 1.

X 2x +1

If we agree that the x-bar from the variable on the left has the same value as
the x-bar found in the variable on the right, we can see that the values of
these two variables will be different, but related to each other.

If the x has a value of 1, then 2x + 1 will have a value of 3:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

2x+1 =21)+1 = 3

Ifx=2,then2x +1=5.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

2x+1 =22)+1 =5
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Every time we replace the x-bar with a certain number of chips, each of the
other x-bars will also represent that same number of chips, and the two
variables will take on values which are specifically related to each other.
Using the above example again, if x =3 then2x +1=7.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,

2x+1=23)+1=7

Ifx="2then2x +1="-3.

2x+1=2-2)+1=-3

We often show the related values of two related variables by making a table
of values. To make the table, we set up two columns: one representing the
values of x, and the other representing the related values for 2x + 1.

X 2x+1
1 3
2 5
3 7
-2 -3

When filling in the table, we can choose any values we wish for x, but once
an x-value is selected we must use that same x-value in calculating the
related value for 2x + 1. (Normally when choosing x-values we choose
simple ones, like 1, 2, 3, 0, -1, -2, but we could choose any other values we
desire). We call x the independent variable and 2x + 1 the dependent
variable; the first number can be chosen independently, but the second value
depends on the first one.

Section 1: Related Numbers 357

N




N

In the expanded table below, some new values for x have been suggested.
How can we calculate the related values of 2x + 1?

X 2x +1
1 3
2 5
3 7
-2 -3

To find the missing values, we substitute the value of x into the expression
2x + 1 as we did in the chapter on EXPRESSIONS.

For x =-3:

2x+1 =2(3)+1=6+1=-5
For x =0:

2x+1 =20)+1=0+1=1
Forx=5:

2x+1=25)+1=10+1 = 11

The completed table looks like this:

2x+1

11
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You can see that there will be no end to the number of values we might pick
for x; the table could go on forever. Each line of the table represents one
entry—one pair of related numbers which are specific values of the two
related variables. Each line of the table may be referred to as an ordered
pair, or a pair of numbers where the first number refers to the value of the
independent variable, and the second number represents the related value
of the dependent variable.

Now let’s use what we have discussed to make a table of values for a
different pair of related variables. We will always start with x as the inde-
pendent variable. This time let’s consider the dependent variable 3x — 5. Use
your chips and substitution techniques to complete the following table of
values.

3x-5

X 3x-5

1 -2

2 1

3

4

0

-1

-2

When x = 3 the picture will look like this:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

N

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

3x-5 = 3(3)-5 = 4
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The completed table will be:

X 3x-5
1 -2

2

3 4

4 7

0 -5
-1 -8
-2 -11

In the picture you can easily see that every time we add one more unit chip
to the value of the independent variable x, the dependent variable 3x — 5 will
increase by 3 unit chips: one for each of its x-bars. This is an important idea
which we will use later for graphing.

Let’s make one more table where the dependent variable will have a
negative x-bar.

6—x

In this case, when we let x = 1, the -x in the dependent expression will be
flipped over to -1.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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When substituting, remember to put the value for x inside a parentheses
with the negative sign out in front of the parentheses. This will help you to
calculate the correct values for 6 — x.

Complete this table.
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Complete the following tables: When x-values aren’t listed,

choose your own values for x.

1. 2. 3.
X 3x-4 x 2x +3 x 5-x
1 -1 1 1
2 2 2 3
3 3 3
0 0 0
-1 -1 -1
2 -2 -2
4 5. 6
x 3-2x x -3x x 5 -3
1 1
2 -1 2 6 ?
3 ? ?
0 0 0 ?
-1 ? ?
2 ? ?

Make your own table of values for the following related variables.
(Use x for the independent variable.) Choose at least five values

for x.

7. xand4x-5
8. xand 3x+2
9. xand 5-x
10. xand 7 - 2x
11. xand 3x +1

12. x and -4x
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Section 2
Rules, Machines, and a Second Variable

Using x and y

In the previous section, two related variables were both represented using
the same letter; one variable was x, the other was represented in terms of x.
In this section we will expand the idea slightly by calling the two variables
by different letters — x and y — and by using a rule. The rule will be an
equation showing the relationship between y and x.

For example, rather than saying that our two related variables are x and
3x + 5, we now will say that the two variables are x and y, and the rule
relating them is

y =3x+5

A table of values expressing this would be

Sometimes, rather than listing a rule and a whole table of values for x and
y, we may want to talk about just the pairs of values. If we list only the pairs,
it is convenient to agree that we will list the pair in parentheses with x first and y
second, separated by a comma.

Each pair of x and y is called an ordered pair, and when we see an
ordered pair written in this way we know that the two values are usually
connected by some rule.

The rule above can now be shown as a list of pairs:

y=3x+5 (0,5),(1,8),(211),(1,2)

Machines and Rules

Another way to illustrate a rule is to imagine a factory or machine that takes
x’s and manufactures y’s. The individual machine is the rule; the input is
the x and the output is the y.

The machine uses the rule as a pattern. Each y is set up as an expression
using x-bars and unit squares. If x is 2, then 2 units are put in the place of
each x-bar in the pattern and the total is sent out as y:

If x is -3, then -3 chips are put on each x in the pattern:

If the rule is y = 2x — 3 then the machine would take each x and pair it with
three less than twice x. The machine would look like this:

If y = -x + 4 then the machine would perform the operation of taking the
opposite of x and adding four to it. The machine would look like this:
Note that each of these machines involves only two basic operations—mul-
tiplying x by a quantity and then adding another quantity to the result.
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Some rules can even be constants which don’t depend on x. An example
—t— would be y = 3. The machine would be:

N

The value of ¥ would be 3 for any choice of x. Here is a list of ordered
pairs:

(1,3),(2,3),(0,3),(1,3),(2,3)

Working Backwards to Find x

If we are given a rule like y = 2x -5, it is possible to take any given value
of y and use the rule to calculate the corresponding related value for x.

For example, using y = 2x — 5, we can find the x-value corresponding to
y =9 by substituting 9 for y and then solving for x in the remaining equation:

y=2x-5

Since y=9, then (9) = 2x-5
9+5 =2x-5+5

14 = 2x
14 _ 2
2 2
7 =x

Summary

Two related variables and their values can be illustrated in several ways:

¢ An equation defining y in terms of x using a rule:

y=3x+5

e A table of values:

Rule: y =3x+5

X y
0 5
1 8
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A list of ordered pairs:

0,5), (1,8), (2,11),(-1,2)

A machine with a clear rule to determine y from x:

Exercises

Finish the tables:

1. y =3
X y
-5 -15
5 ?
10 ?
3 ?
1 ?
-1 ?

2. y=2x+1 3. y=-=x
x y x y
1 3 "6
0 1 -4 4

? 0

? 2 ?
2 ? -3 ?
5 ? 17 ?

Using the given rule, complete the list of ordered pairs by filling

in the missing y’s:

4.
5.
6.

Using the given rules, choose four x’s and then calculate the

y =x-17:
y =3x+1:
y =17 -x:

matching y’s:

10.
11.
12.
13.

y = 17x-17
y=x+17
y=17-x
y=3x-3
y=23x-4
y=4x-5
y=-=x-1

(2/ —)/ (5/ —)/ (-5/ —)/ (17/ —)
(2/ —)/ (5/ —)/ (-5/ —)/ (17/ —)
(2/ —)/ (5/ —)/ (-5/ —)/ (17/ —)

P S Py G
) S Py G
) S Py G
(-, 2 (=2, (=9, (=)
(=) (=, 2, (=2, (=, )
) S Py G
(=) (=2, (=2, (=, )
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14. y:_x+1 (—/—)/(—/—)/(—/—)/(—r—)
15. y=7 (—/—)/(—/—)/(—/—)/(—/—)

Take the given rule and the given value of y and work backwards

to find the related value of x:

16. y = 17x-17 y=17
17. y = x+17 y=21
18. y =17 -x y=0

19. y=3x-3 y="9
20. =3x-4 y="10
21. y =4x-5 =15
22, y=-x-1 y= "6
23. y=-x+1 =4
24, y = 3x+1 y=1

25. y="3x-1 y=2
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Section 3
Graphs and Coordinates

Chips and Ordered Pairs

One value from an ordered pair can easily be represented by a column of
unit chips. For the pair (1, 3), we line up a column of 3 chips to represent y:
If we want to show a list of pairs from an equation, we first prepare a column
for the y -value in each ordered pair:

y=2x+1: (1,3),(2,5),3,7)
We then take a horizontal number line and arrange the columns (y) at the
place on the line which matches that pair’s x. The position on the line

represents x and the height of the column represents y for each ordered pair.

If negative numbers are included, we expand the x number line to the left
to represent negative values of x; if the y value is negative, we arrange the
chips down instead of up.

In summary, we can show a list of pairs as a group of columns:

From Chips to Points

To simplify the picture, we can use the position of the center of the end of
the column (top or bottom) to represent the related values of both x and y;
the chips are no longer needed. This means that an ordered pair can be
shown as a single point:

To represent several pairs at once, we simply draw each point separately in
the same picture:

The Coordinate System

The idea we have just developed is called the coordinate system. The
number lines showing the values for x and y are called axes; individually
they are called the x axis and the y axis. An ordered pair now represents two
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numbers—the first is the x coordinate and the second is the y coordinate.
The point where x and y are both zero — (0, 0) — is known as the origin.

Each ordered pair can be shown as a single point. When we illustrate a list
of ordered pairs as points on the coordinate system, we call this a graph.
Here are two examples of graphs:

Graphing Points

To graph a point, we start at the origin. We then move x units to the right (if
x is positive) or to the left (if x is negative). The second step is to move up y
units (if y is positive) or down (if y is negative). The ending point represents
that ordered pair (x, y):

Did you notice that x and y can be both positive, both negative, or one
positive and the other negative?

Alternative Methods

An ordered pair can be graphed in several different ways; the result is of
course the same. The procedure shown above is to begin at the origin, move
horizontally (right or left) for x, then vertically (up or down) for y:

It is obvious that we can accomplish the same thing by first locating the y by
moving up or down and then locating the x by moving right or left:
Finally, we can locate the x and y separately; the point is graphed at the
intersection of the lines on the grid:

These methods are essentially the same—the choice is yours. You must keep
our agreements:

e In an ordered pair, the x is listed first and the y second.

e On the graph, the x axis is horizontal (left to right) and the y axis is
vertical (up and down).

¢ On the coordinate system, we count from the origin (0, 0).

¢ On the x axis, positive numbers are to the right of the center and
negative numbers are to the left of the center.

e On the y axis, positive numbers are up from the center and nega-
tive numbers are down from the center.

These agreements are a sensible method of ensuring that we are all
talking about the same things; the choice of positive and negative directions
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is natural. If we were inventing mathematics ourselves, we could alter the
order of x and y or the direction of the axes. But since this system is already
in use, we will abide by the rules so that we are all speaking the same
language.

Coordinates that are Fractions or Irrationals

The coordinates of a point can be fractions or irrational numbers. The
method of finding the proper position of such a point is the same, but you
must determine the approximate locations on the axes.

Fractions such as % should be written as mixed numbers (1 15) to help
you find the locations. Square roots should computed on a calculator or
approximated (as in the chapter on POWERS AND ROOTS).

Exercises

Set up each pair as a column of chips at the correct x position:

(5,°1)
("1, 5)
3, 1)
(0,3)
(*5,0)

ok B

Graph each ordered pair:

(1, 6)
(72, 3)
(-3, 7/2)
(-3,-72)
10. (-5, 4)

° ® N o

Graph each list of ordered pairs on the same coordinate graph.

11. (0,0),(3,3),(5,5), (-1,71), (-3, -3)

12. (0,7),(1,8),(2,75),(3,4), 4, 3)

13. (2,1),(1,2),(2,6),(6,2),(3,4), (4, 3), (5, %)

14. (0,1),(1,8),(1,8),(2,6),(2,6),(3,1), (4,°6), (-3, 1), (-4, -6)
15. (0,0),(1,-1),(2,2),(2,72),(5,5),(7,77), (-4, 4)
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Section 4
Graphs of Lines

Lines on the Coordinate Graph

In the previous section, we graphed individual points and lists of points.
Now we will learn to graph lists of points from a rule. Each rule will have
a specific shape.

In this chapter, we will limit ourselves to rules that include x’s, numbers,
adding/subtracting, and multiplying/dividing. We will not consider rules
or equations that include x2, x3, 1, and other more complicated formulas.

To graph a rule, follow these simple steps:

e Choose several x values. Zero and small numbers are usually best.
e Calculate the matching y for each x, making an ordered pair (x, y).
e Put each ordered pair onto the graph.

e Connect the points.

Here are the graphs of two examples:

Lines and Rules

The graphs shown above are in the form of a line. Arule that is a line on the
graph is called linear. The following rules are linear:

y =3x+4

y="2x+5

y =10-x
y = 2x

These rules have an x term and/or a number term and are in the form

Yy =mx+b

where m and b are any numbers. Such a rule will be a line. As you might
expect, the reverse is also true—any graph that is a line has a rule which can
be written in the form of y = mx + b.

Not all equations graph as lines. The following equations are not lines; they
involve higher powers of x (x2 x ) division by x, or products of x and y:
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1
_2_
y=x+7

xXy+3 =x

To graph a line, we can follow the steps in Section 3, but since we know the
graph will be a line, we will only need three (x, y) pairs. Here are the steps:

e Confirm the rule is a line and has the form y = mx +b.

e Choose any three x values.

e Calculate the y values.

e Graph each ordered pair as a point.

e Draw aline through the three points.
If we never made errors, two points would be enough. Using three points
helps to ensure that we graph the correct line; if the three points are not in
a line, than it is obvious that we have made a mistake in calculating the y

values or in placing the values on the graph.
Here are two more examples of graphing a linear rule:

A Special Case

What is the meaning of the following rule?
y=>

If x is 2, what is y? If x is -4, what is y? The answer is very simple—uwhatever
x you choose, the answer is that y is 5! As a table, it looks like this:

As a machine, it looks like this:

The graph of y = 5 is a simple horizontal line. We choose several ordered
pairs where the y-value is 5:

Notice that this is a rule—it is just a very simple one. As a machine, we can
see that we can send in anything that we want, but it always sends out three
chips.

As a graph, y = 5 is a horizontal line because as x changes, y stays level at
exactly five. The line travels along from left to right, but y remains constant.
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The y bar.

We will now create a chip for y. Since y represents some unknown number
of unit squares, we will show it as a bar that is 1 unit wide and unknown
number of units long:

The bars for y and x are similar but stand for different unknown quantities:
We will use the symbol -y to stand for the opposite of y. The other (white)
side of the bar will represent -v.

The following cautions may be helpful:

e x is shown as longer than y to help us tell the two apart; x is not
necessarily greater than y.

¢ xmay be greater, less than or equal to y in any given problem.

¢ x and y are shown with their shaded side up, but they may stand
for numbers that are negative, zero, or positive.

e The symbols -x and -y represent the opposites of x and y.

e The symbols -x and -y may stand for numbers that are negative,
zero, or positive.

Equations and Rules

We will often encounter an equation involving both x and y. An equation is
defined as any two expressions that are given as equal to each other. This is
not quite the same as a rule because a rule gives y as some expression
including numbers and x’s.

Some equations can be rewritten to represent rules by the use of our
previous techniques for solving equations. Our goal is to rearrange the
equation to “isolate” y. For example, begin with:

x+y =12

Isolate y:

X—x+y =-x+12
= -x+12
Notice that we are only rearranging the equation to show the rule. In

general, you cannot solve the equation to determine one x or y. (You can find the
rule for y in terms of x.) Here are several more examples:

The same problem shown with symbols only:

6
“4x + 6

4x + 2y

dx —4x + 2y
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2y

1
5(2}/)
y

A more difficult example:

“4x + 6
%('4x +6)

2x+3

The same problem shown with symbols only:

3x+6-2y
3x+6-2y
3x+6-2y
3x+6-2y-y

3x +6 -3y
3x+3x+6+6+ 3y
-3y

1
- 5('3}/)

y

=y+3+2(x-6)
=y+3+2x+-12

=y+2x+9

y-y+2x+9
2x +79
2x+3x+9+6
-x + 15

- %(-x +-15)

1
§x+5

Summary

If a rule is given as an equation in x and y, here are the steps to graph the

line:

e Solve the equation for y:

Multiply out any quantities in parentheses.

Add y’s to both sides to “isolate” the y’s on one side.

Add x’s to both sides to leave x’s only on the other side.

Add units to both sides to leave units and x’s on the other side.
Multiply (or divide) both sides to leave only one y.

e Pick three values of x. Calculate the matching y values to give

ordered pairs (x, y).

e Plot the points on the graph.

e Draw aline through the points.

It should be obvious that the first steps are almost identical to the steps for
solving equations with only x. The difference is that we solve for y as equal
to an expression containing x’s and numbers. As before, it does not matter
which side you pick for y; you may choose, however, to write the final rule

with the y on the left.
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Exercises

Which of the following rules are linear? (a linear rule can be writ-

ten in the form y = mx + b)

1. y = 999x + 1234
2.y = 125- .532x
3. y=x

4. y =20

5. y=2x+1

6. y=0x"+2x+1

Graph the following rules:

y=x+1

y=x-3

y="3x+7
10. =2x-5
11. y = 2x-5
12. y =6

Change the following equations to rules by solving for y. Graph

the result by plotting at least three points for each equation:

13. x+y =3x+2y+3

14. 2x+y = 3x-5

15. 2x+y = Bx+7

16. 3y+x = 2x-2y +15
17. 2x+y-6 = 3x-5

18. 3x+2y+5=-x+9
19. 2(x-3) = -x+y

20. x+32-x) =x+2y+1)—y
2. 2(y+x) =2x+y+6

22. 3[2-4(y+3)] = 6(x—-1)
23. y+%=2x—%

24, 5y+6 = 3x+1

25. 1[1-1y-1)] = -x-1
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Section 9
Slopes and Intercepts

Uphill and Downhill

Consider the following lines as side views of roads in the real world. We will
imagine traveling the roads from left to right.

Like a road, a line on the graph is either uphill, downhill, or flat. We say the
line has slope; as we move to the right we say that an uphill line has positive
slope, a downhill line has negative slope, and a flat line has zero slope.

If we want to assign a number to represent the slope, it makes sense to call
a flat line “0” and to give higher numbers to steeper uphill slopes. It also
makes sense to give increasing downhill slopes values which are increas-
ingly negative (-1, 2,3, ...):

The formal definition is as follows:

On the graph, you can see that the slope measures how far the line moves
up for each unit that it moves to the right.

The slope can be measured at any point. It is useful to think of a line as a
series of stair steps that move 1 to the right, then up or down, 1 more to the
right, then up or down again, etc.

Here are some other examples of slopes:

Another Definition

We can also define the slope as a fraction or ratio. In the line shown on the
next page, the slope is clearly 2 when we measure over 1 and up 2. On the
same line, if we measure over 2 or 3 on the x axis, the y value increases at a
rate that is in the same proportions. This means that the y increase relative to
the x increase is still the same:

We write this as a fraction with the change in y (rise) on top and the change
in x (run) on the bottom. The slope can also be defined as the rise over the run.
Here are some other examples:

Two Definitions Compared

We now have two seemingly different definitions of slope:

It would not be useful if the definitions were actually different; in fact they
are really the same:

The first definition is in fact a ratio of the distance up relative to 1, while the
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second definition is the ratio of rise to run over any distance. The two results
are identical, so in each problem we can use the definition that is more
convenient or more comfortable.

The Slope Between Two Points

It takes time to graph points and lines. If we wish to know the slope of the
line between two points, we can calculate the slope without making the
graph. First, look at the slope of the line between (2, 1) and (5,7):

The rise is 6 and the run is 3. We can find this by taking the difference of the
y coordinates (rise) and the difference of the x coordinates (run):

Because the individual x or y coordinate represents the distance of a given
point from one axis of the graph, subtracting the x or y coordinates of two
points gives the horizontal or vertical difference between the two points.
The slope is the vertical difference divided by the horizontal difference:

As seen above, you can use either point as the first point, as long as you use
the same point first when subtracting for both x and y; you do not need to
memorize this formula; if you understand the concept of a slope, you will
be able to construct the formula any time you need it.

Intercepts

A place where a line hits the y axis or x axis is called an intercept. As you
might expect, if the line hits the x axis we call the point an x intercept and if
it hits the y axis we call the point a y intercept.

In this book, we will use the term intercept loosely; it will mean either the
ordered pair (point) at the intersection or the coordinate on the axis. For
example:

We can see that x intercepts always have coordinates of (—, 0) and y
intercepts always have coordinates of (0, _). In addition, we can see that a
linear rule may have a y intercept or it may have both a y intercept and an x
intercept. (Can it have only an x intercept?). The intercepts may be positive,
negative, or zero.

Finding Intercepts

Intercepts can be found by graphing the rule and then examining the graph.
This can be slow; if the intersection points are not exact integers, it can also
be inaccurate:

If we use the idea that the x intercept is a point where y = 0, then we can
solve the equation algebraically as follows:

Yy =2x-5
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for x intercept,y = 0

0) = 2x-5
5 =2
5 _
2—x

To find the y intercept, we use the idea that points on the y axis have x = 0:

y=2x-5
Sincex = 0
y=20)-5
y=0-5
y=7
To find the intercepts:

e For the x intercept:
1. On the x axis, y is 0.
2. Substitute y = 0 in the formula for the line.
3. Solve for x. This is the value of the x intercept.

e For the y intercept:
1. On the y axis, x is 0.
2. Substitute x = 0 in the formula for the line.
3. Solve for y. This is the value of the y intercept.

Itis not necessary (and not helpful) to attempt to memorize this process. For
each intercept, decide from your understanding of graphing which coordi-

nate is 0, then substitute and solve the equation.

Exercises

Find the slopes of these lines by examining the graphs:

Find the slope of the line between each pair of points without

graphing. Then graph the line to see if you are correct:

3. (2,1),(2,5
4. (-1,-1),(5,6)
5. (1,1),4,4)
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6. (2,1),(7,1)
7. (12,1), (1, 12)
8. (-1,-2), 4,-5)

Find the slope and intercepts by graphing:

9. y=-x-7
10. y = "3x-12
11. 2y+3 = 4x+9

Find the intercepts by using the formula alone, without graphing:

12. y=x-6
13. y="2x-2
14. 3y+3 =-x+9

Find the slope between the two intercepts. Remember that each in-

tercept is an ordered pair.

Example: y interceptis 5, x intercept is 2:

o

-5
2

Solution: Points are (0, 5) and (2, 0). Slope is = ?

o

15. The y intercept is (0, 3) and the x intercept is (1, 0).
16. The y intercept is (0, -3) and the x intercept is (6, 0).
17. The y intercept is (0, 6) and the x intercept is (-3, 0).
18. The y intercept is -1 and the x intercept is -1.

19. The y intercept is -5 and the x intercept is %
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Section 6
Graphing with Slopes and Intercepts

The Slope-intercept Method

Graphing a line by making a table of points can be lengthy and inefficient.
This section will cover a better method that allows you to merely look at the
rule and then immediately graph it. In addition, you will be able to look at
any graph of a line and then immediately know the rule that it represents.
To accomplish these feats, we will use the ideas of slope and intercept from
the previous section.

First, examine the following graphs, their slopes, and their y intercepts:

We can see that when the rule is written in the form of y = mx + b, m is the
slope and b is the y intercept. This is true for all linear rules, even if there is
a negative slope or a zero slope.

You may want to rearrange the terms to put the rule in the form of y =
mx + b. You can add missing ones and zeros to make the equation fit the
format:

y = 2x becomes  y =2x+0

y =10-x becomes y=-1x+10

y=25 becomes y = 0x+5
_ X becomes _1 +0
y_z y_zx

y=3x-5  becomes y =3x+-5

y:ﬂ becomes y:%x+0

To graph a rule or equation using this method:

e If necessary, solve the given equation for y.
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00 Rewrite the rule in the form of y = mx + b. Write all terms as
adding negatives rather than subtracting.

e Determine the slope (i) and the y intercept (b).

e On the graph, start at the y intercept and go to the right at the
correct slope.

e Draw the line.
You have two methods to draw the line when the slope is a fraction such as

%5 — either go over one and then up %5, or go over 3 (run) and up 2 (rise).
Here is how to graph

1
y = ) x+3
Here is how to graph

y = "2x (y = 2x+0)

The Slope-Intercept Method—Why it Works

The slope-intercept method is not just a way to memorize how to make
graphs quickly—there is a simple reason why the m turns out to be the slope
and the b turns out to be the y intercept. As we can see from the next two
diagrams, m is the number of x’s; it controls how much y goes up each time
we increase x by 1. If there are 3 x’s, then y goes up 3 each time x goes up 1.
We can also see that b is the number of unit chips we have when x is zero.
This is the “starting point” on the y axis or the y intercept.
Below, we can see a machine for y = 3x + 5. If we think of x as first 0, then 1,
then 2, we are moving along the x axis from the origin to the right. Because
the machine has 5 units (b = 5), we start at 5 when x is 0. Because the machine
has 3 x’s (m = 3), y goes up 3 each time x goes up 1. This is a slope of 3.

Special Lines

We have already looked at lines such as

y=3 o y=-2

If you use the slope-intercept method, first rewrite the equation in the
y = mx +b form as:

y=0+3 and y=0x+2
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We now can see that these lines have a slope of 0 (they are flat) and have y V l ——
intercepts of 3 and -2: |
What about an equation such as

x =57?

First, this is not really a rule because it gives no instructions to determine y
from x. We can graph all the ordered pairs with x = 5 and we see that we
get a vertical line. Using (5, 1), (5, 2), and (5, -1):

The slope of this line is also hard to define because it is infinitely steep. By
our previous definition, it has a run of zero and division by zero is not

defined. We must then agree that the slope is not defined.

Exercises

Graph the following lines by using the slope and y intercept:

1. y=2x+1
2. y=2x+3
3. y="2x-1

1
4. y = —§x+3

5. y=x-2

Write the rule for the following lines. (Hint: Determine the slope
and y intercept, then write the equation in the format

of y=mx + b by filling in m and b.:

Solve the following equations for y and then graph using the

slope-intercept method:

8. y-2=x+1
9. y+5=2x+4
10. 2y-1=x-7
11. 2y+6x =10
12. 3y+2x =12
13. 2y-2x = x-4
14. y+4=-x-2
15. 2y = ~6+y
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16. x+y+11 =5+3x+6
17. 3y-5=7+2x

Which of the following equations have undefined slopes?:

18. 0=y
19. y+x =y+2x+3
20. 3(x+2y)—-13 = 2x+6(y —2)
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ing With Two Intercepts

Standard Form

Equations involving x and y do not have to be written in the slope-intercept
form to generate a straight line graph. Any equation which has both x and
y to the first power will generate a straight line. More specifically, for the
graph to be a stralght line, neither variable can have exponents higher than
one (like 2 or Y ) no two variables can be multiplied together (like xy) and
neither variable can appear in the denominator of a fraction (like % or %)).
These examples will help to illustrate.

3x+2y =6 Straightline graph

y=2x-3 Straightline graph

2

X +2 =5y NOT a straight line

2xy —5x = 10 NOT a straight line
3 . :
s 5 =2y NOT a straight line

Any equation which does generate a straight line graph can be written in
many ways. Other than the slope-intercept form, another common way of
writing linear equations is called standard form. Standard form always
shows the x-term added to the y-term equaling a constant. For example,
below are two linear equations written in standard form.

3x+2y =6
x-5y = 10

To graph linear equations which are written in standard form we could
rearrange each equation, solving it for y and thus putting it into slope-inter-
cept form before graphing it. This method would work, but there is another
way that is usually easier.
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Two-Intercept Graphing

We know that we can find the y-intercept of a graph (where the graph
crosses the y-axis) by letting x = 0 in the equation and solving for y. Simi-
larly, we can find where the graph crosses the x-axis (the x-intercept), by
letting ¥ = 0 and solving for x in the equation.
Finding both the x and y intercepts of a graph is particularly easy when
the equation is written in standard form, as these examples will illustrate:
Start with the equation:

3x+2y =6
To find the y-intercept, let x = 0:

30)+2y =6
2y = 6
y=3

The y-intercept is (0,3)

Now to find the x-intercept, let y = 0.

3x+20) =6
3x =6
x =2

The x-intercept is (2,0)

Now that we know that where the graph crosses each axis, we can mark the
two intercepts and draw the graph.
A second example would be:

2x—6y = 12
To find the y-intercept let x = 0.

200)-6y = 12
oy = 12
y =72

The y-intercept is (0,72).

To find the x-intercept let y = 0:

2x - 6(0) = 12
2x = 12
X =6
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The x-intercept is (6, 0)

The graph is:

When an equation is written in standard form, finding each of the intercepts
is really a one step process requiring dividing the constant term by the
coefficient of the letter whose intercept is being calculated.

Difficulties With the Two Intercept Method

Although the intercepts for an equation may be easy to calculate, they may
not come out to be whole numbers. This may make the graph harder to
draw accurately. For example, consider the equation

5x-2y = 8
We can find the intercepts:
Letx=0
50)-2y = 8
2y =8
y="4

The y-intercept is (0, ~4)

Lety=0
5x —2(0)
5x

Uil ©

X =

The x-intercept is (%5, 0)

Exactly graphing a value like % is more difficult than graphing a whole
number. It may be difficult to make the graph accurate.

The problem of accuracy becomes particularly pronounced when one of the
intercepts is a fraction and both intercepts are very near the origin (0, 0) of
the graph.

We can deal with these difficult cases by solving the equation for y and
thus converting the equation into slope-intercept form.
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S5x -2y =8 Add ~5x
2y = 5x+8 Divide by =2

y = %x—4

The graph has a y-intercept of (0, “4) and a slope of %. This can now be
graphed more accurately:

Exercises

386

Graph these equations using the two-intercept method.

1. 2x-3y =6

2. x+2y =238

3. 2x-y=4

4. 3x+4y =12
5. x-5y =5

6. Bx+2y = -12
7. 5x-3y =15
8. -x-3y =38

9. 6x-2y =6
10. 4x-y =8

Convert these equations to slope-intercept form by solving for y,

and then graph.

11. 3x+2y = 8
12. 2x-y =5
13. 4x-2y = 2
14. 5x+y = 4
15. 4x+3y = 6
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Section 8
Summary

Related Variables

We now have many different meanings for the idea of two related variables.
This concept is one of the most powerful and useful ideas in mathematics.
Important ideas can usually be shown in many ways; we have presented
more than one illustration in order to help you to understand, not to confuse
you.

The ideas discussed in this chapter are tables, rules, lists of ordered pairs,
machines, and graphs. Each is useful in different areas of mathematics, but
each is essentially describing the same concept. To review, the different
methods of showing two related variables are:

e A machine:

o Agraph:

Note: See the APPENDIX for more information on the idea of a rule and the
new concept of a function.

Exercises

[lustrate each of the following rules with a table, a list of ordered

pairs, a machine, and a graph:

1. y=-x+6
2. y=2x-1
3. y=2x-3
4. y = "3x+5
5. y=%x—3
6. y=23x-3
7. y=20
8. y=-x
9. y=3
10. y=x
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Rule: y =3x+5

X y
0 5
1 8
2 11
-1 2
-2 -1
-3 -4
-4 -7
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X Rule Y
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R ¥

4
§ l 3 right, 4 up

<Y

- (-2,-5)

5 2 left, 5 down

4T (2,5
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y=2x+1
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y=-x+7

401

Section 8: Summary



N

Any rule of form y = mx+b isaline.

Any graph that is a line can be written in the form
y = mx+Db.

These equations
do not graph
as straight lines.
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x+y =12

Xx—=x+y = -x+12

y=-x+12

406
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= OO0 dx+2y = 6

] 4x—4x+2y = “4x+6

I 209 = 5(4x+6)

I [ O | 0y IO

1 0OOO C

[ -000 y = xe3
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3x+6-2 3+2(x-6) LI
xX+6-2y = y+3+2(x-

3x+6-2y = y+2x+-9
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L]
a0 L -

3x+6-3y = 2x+-9

=0 -

By = x+-15 DDD )

y:%x+5 D _
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Positive (uphill) Negative (downhill) Zero (flat)

A A A

y N -

: ~—-

Read this direction

Steeper uphill

Uphill

= Flat

Downhill

Steeper downhill
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Slope =1
3
2 g
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Slope = 2
? Slope =1
\|/
‘ ‘ Slope =0
1, 1 2
/|
Slope = -1
-2 Slope =2
The Slope of a Line

Looking left to right, the slope is the
distance travelled up or down for
every 1 unit travelled to the right.
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Slope of a Line (Alternate definition)

The ratio of the rise (change in y)
to the run (change in x)

change in rise
slope = seny _
changeinx run

N W

Slope =

> ON

- N @A O D Nx

\

-7-6-6-4-3-2-1 1 3 4 5 6 7 x

-0 Slope= % =-3
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Definitions of Slope

1. The distance traveled up or down for every 1 unit
travelled to the the right.

change iny  rise

2. Slope = change inx = run
; Definition 1: % up for
q- every 1 over
5.
4. b
3 5/6 Definition 2: Up 5 and
5. over 6, slope = %
ﬂ ﬂ -
| §
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Slope between (2, 1) and (5, 7):
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/

X intercept:
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Where exactly is the
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y=2x+0 y=2x+1
Slope =2 Slope =2
y intercept =0 y intercept = 1
, /- ;
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y=-lx+5 y=-lx+4
Slope = -1 Slope = -1
y intercept =5 y intercept = 4
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Graphing: Slope-Intercept Method

y=mx+b

m is slope, b is y intercept
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Vertical Line:

Rise is 3.
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3x+2y = 6

[ B R
~N o O &~ O

Section 8: Summary

425




N
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5x -2y = 8
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O A table and rule:

x y
0 -2
1 -1
2 0
-1 -3

o Alist of ordered pairs:

0,-2),(1,-1),(2,0), (-1,-3)

X Rule y

77— 7 L AL S | — Answer
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Chapter 1 3
Systems of Equations




All solutions

y=2x+3

An equation is a number statement having one or more unknowns and
0,3),(1,5),(1,1),(1.5,6), ...

showing that two expressions are equal in value. For example:
On a graph, we can represent all of the answers by a line. Each point on the

line is a solution to the equation.

This is a linear equation in two unknowns. The solution to this equation

is not one number—it is an infinite list of ordered pairs:

pairs, maps, graphs, and machines. In this chapter, we will continue to

In the last chapter, we looked at functions as charts, rules, lists of ordered
develop ideas about ordered pairs, equations, and graphs.

Functions and Equations

Equations and Solutions
Individual solutions

Section 1
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A linear equation has x terms, y terms, or both. It may also have number
terms. Equations having terms with x* y* 14, , or xy are not linear and will

not have straight line graphs.

Linear Not Linear
y=3x+4 3=3
3x+y =5+x xy+3x = 4
y =2 X +3x+4 =0
_9 = 1
x-2=0 y+;:3

Pairs of Equations

In many real-world situations, we encounter linear equations in related-
pairs. A system of equations is a group of equations where we are looking
for a common solution. The solution or solution set is one or more ordered
pairs that satisty all equations. Here is a system of two equations:

y=2x+3
y=x+5

Since a single equation is an instruction to find all possible ordered pairs
that make the equation true, a group of two equations gives us the task of finding
the ordered pair(s) that make both equations true at the same time. Because the
equations represent lines, we are looking for the point that is on both lines;
this is the place where the graphs cross:

Intersection: (2, 7)

N

y : 1x1+15

=

2x+3

N
<
Il

NG

-7 -5 -4 -3 -f-1

[ R S
N DO BN g

From the graph, we can see that both of these equations are satisfied at the
point (2, 7) where the two lines cross. The values x = 2 and y = 7 will make
both equations true, so this ordered pair is the solution of the system of
equations.
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We can confirm that (2, 7) is the solution by testing these x and y values in
both equations:

y=2x+3 y=x+5

(7) = 22)+3 (7) = (2)+5
7 =443 7 =245
7 =17 7 =7

Here is another example of a system of equations:

By trial and error, we could list some solutions (ordered pairs) for each
equation and hope to find a pair that works in both equations:

For y = x, solutions are (0, 0), (2,2), (3, 3)
For x +y = 6, solutions are (1,5), (2,4), (3,3)

The common solution is (3, 3). On the graph, we would see the answer as
the intersection of the two lines:

Both equations

Although trial and error may work to find solutions for some easy situ-
ations, it will obviously be a poor way to find solutions for many system of
equations; the rest of this chapter will cover several different ways to find
the solution in a more efficient manner.
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Bars for x and y

In the previous chapter, we created a new bar for y. We will continue to use
the different bars for x and y to help us solve systems of equations. To
review, the two bars look like this:

<

BEE 1

We will now use these bars to help us check the solutions we have already
obtained for the two systems of equations given above. For the first system:

y=2x+3
y=x+5
Solution: (2,7)orx=2,y=7

To verify the solution, take the number for x and put that many unit chips
on each x bar. Do the same for y. If both sides balance in each equation, the
solution is correct:

7777777777777777777777777777777777777777777
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Section 1: Equations and Solutions 415

) =
(7) =

2(x) + 3
2(2) +3




ey
S EHE
Ve
y) = ) +5 Ay oy A7y
(7) = 2)+5 B 7 4
.,  ememey | EmEw . e
&Es 4

)+ = 6

LTLTLT

s o AAw . ey -

777777777777777777777777777777

ffffffffffffff

416 Chapter 13: SYSTEMS OF EQUATIONS



Exercises

Find three solutions (ordered pairs) to each equation:

1. y=x+1
2. y=2x-3

Use the chips to verify that the given ordered pair is a solution to

the given system of equations:

3. y=x+1 4,5)
y=2x-3
4. 2x+y =12 (4, 4)
y=x
5. y=x+2 (2,4)
y=6-Xx
6. 2x+y =28 (3,2)
y=x-1
7. y=2x+1 (1, 3)
y=-x+4
8. x+2y=3 (3, 0)
y=x-3
9. y=3x-5 (3, 4)
y=x+1
10. 3x-y =1 (4, 11)
y=2x+3

Verify the solution without using the chips:

11. 2x-y =0 (0, 0)
y = 3x

12. 3x-y =11 (3,2)
y=x-5

Section 1: Equations and Solutions 417
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13.

14.

15.

16.

(2,3)

y=x+1 (1,2)

3x + 5y

3
24 (4, 8)
4

8—4y  (4,3)
3
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y=x+1
y=7-x

usually meet in one point. That point represents the ordered pair (x, y) that
works for both equations at the same time. For example, consider the

the same coordinate graph. Since we are dealing with lines, the lines will
following system:

One method of solving a system of equations is to put the two equations on

Solving by Graphing
Graphing the System

Section 2

First we make a table of 3 or more ordered pairs that satisfy each equation:
y=x+1

We then graph each line and find the point of intersection. This is our

solution:

Solution is (3, 4)

419
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Finally, we must verify that the solution is correct. We test the solution (3, 4)
by substituting x = 3 and y = 4 into each equation separately. If both
equations make true statements for these values, our solution is correct:

W) = (0 +1

4) = 3)+1

W) =7-()

) =7-0)

LTy = LT
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We will do another example to illustrate the graphing method. Consider the

system show below:

y—-Xx

x+y =0

Our first step is to solve each equation for y. To do this, we add and multiply
on both sides of each equation until we “isolate” y. (See RULES AND GRAPHS,
Section 4).

y—-x =4 x+y=20
y—-x =4 x+y =0
+X +X —X —X
y=x+4 y = -x
y=1x+4 y="1x+0
Slope = 1; y-intercept =4 | Slope =-1; y-intercept =0

We now have two equations in the slope-intercept form. We plot both
equations on the same graph:

y=x+4 y=-x Solution is (-2, 2)

> <

y y

- —4 6 6| y-intercept=10

4 mtercep#l .y AA{lope of 1 y / .
2 2

/ Slope of -1

-6 f4 -2 9 2 4 6 X -6 -4 -2 9 2 4 6 * -6 f4 -2 ¢ 2 4
-2 -2 -2
-4 -4 -4

Finally we see the solution is (-2, 2) and we verify it in both equations:

y—-x =4 x+y=20
- =4 )+ =0
2)-(C2) =4 C2)+@2) =0
4 =4 0=20
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Limitations of the Graphing Method

The graphing method gives us a clear picture of the solution to a system of

equations, but this method has some important limitations. First, it may
take a great deal of time to graph the lines, especially if the numbers are
large or the slopes are fractional amounts. Second, it is not always easy to
tell where the lines actually meet; if the intersection is not on a place where
the grid lines meet, then we have to guess at a fractional answer:

A
7
6
5 \ e
What are the co- . \\ ,/
ordinates of the \/
intersection? S
2 // \\
/ N\
1
-

Finally, the lines may meet at a place that has such large coordinates that it
is impractical to graph them at all.

1 )
/ 6,000 T
5000 +

1 4,000 +
1 3,000 +
1 2,000 +
1 1000 1

In the sections that follow, we will learn two alternative techniques to
supplement the graphing method for finding solutions to a system of
equations. These new methods will rely on algebraic symbols instead of
graphing lines.
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Summary

The steps for solving a system of equations using a graph are as follows:

e If necessary, solve each equation for y.

e Graph the equations by plotting 3 points for each line or by using
the slope-intercept method.

¢ Read the solution—the point at the intersection of the lines.

e Check the solution by substituting the x and y values for the point
of intersection into both of the original equations to be sure that
both equations give true statements.

Exercises

Graph each system and find the ordered pair that is the solution.

Check x and y in both equations.

x+y =3
y=x-5

y=x+1
y=2x-3

x+2 =y

x+y ="1
y="5+x

y=x
2x+y =6

y=x+1
y=2x-1
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10. x-y="1
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Section 3
The Substitution Method

Using the Equations Together

Another approach to solving systems of equations is called substitution.
The substitution method gives us the exact solution, even if the values of x
and y are fractional or very large. Substitution doesn’t give us a picture of
the equations; it just gives us the value of the solution. We will use informa-
tion from both equations to determine the solution. For example, consider
this system of equations:

y = 2x
x+y =3

Using our new y bar, here is a picture of this system:

= y =2
= x+y =3
If the system has a solution, then the x and y values of that solution will
work (make true statments) in both equations.
The first equation states that y is equal to 2x, so y and 2x stand for the
same amount and we can substitute 2x instead of y in the second equation:
1 | = x+(y) =3
(v equals 2x) L
| = X+ (2x) = 3
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This substitution gives a new equation:

x+(2x) =3

We can solve this equation because it only contains the one variable x. Here
is how we complete the solution with our chips:

rr@p =3 [ [0 -000

l (y = 2%) |

S S w— e [ [

3x = 3 :=%

x=1 L I=0[]

Since we know that x must be 1, our next step is to use this information to

help us find y:
— = |
y =200 | |
y =2Q1)

y =2 []
E:D

Here is the process with symbols alone:

y = 2x
x+y) =3
x+(2x)=3

3x =3
1 1
33 = 30)

x =1
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Completing the solution for y:

y = 2x
y = 2(1) (because x=1)
y =2

Our answer is x = 1, y = 2. We can also write this as (1, 2).

Finally, we check our solution by replacing the x and y in both equations
with 1 and 2:

= X+ =3
SN S R = - M+@ = 3
N
- 3=3
- ) = 20

= 2) = 2(1)

More Examples

We will now look at two more examples. We solve each system in the same
way, by substituting the value of one variable (from one equation) into the
second equation.

Section 3: The Substitution Method 427



Here is the first system:

y=2x+1
2x+y =9
1
y=2x+1 l:l = I:l D

2ty =9 I

| -
2+ (y) = 9 L1 /3 -000
1 - OOoo
(substitute for y) y=2x+1)
0  ooo
2e+ (2x+1) = 9 | || - OO0
4x+1 =9 | I L O0o0
] L]
[ ] L]
4x = 8 I e
] LI
x =2 [ 1 =[]

Now that we know x, we can continue on to solve for y:

y=2x+1
y =22)+1 (because x=2)
y=>5

The solutionis x =2 and y = 5, or (2, 5)

428 Chapter 13: SYSTEMS OF EQUATIONS



Here is the check:

= ) = 2(x)+1

_ 5=5

The check continues:

- 2()+ () = 9
B N
1,1’,1:’,:T,:’,:ﬁi:i:ii:ﬁ:ﬁi:ﬁ':f; _ = 22)+®) =9
= 9=9
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Here is a second example of a system of equations to solve:

y=2x-1
x+y="7
—
y = 2x-1 e —

0]
X+y=-7 1 1 = [I]E

oo
=7 1 3 =000
(substitute fory) D

y=2x-1
x+(Q2x-1) = -7 o L] | OO0
3x-1= -7 = DD%
[
= 1 -00
[
x =2 —

Now that we know x is -2, we can continue on to solve for y:

y=2x)-1
y=22)-1 (because x="2)
y="5

The solution is x = 2 and y = -5, or (-2, -5)
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Here is the check. For the first equation:

E=::D ) = 2(x)-1
g ot
O1= o B (5) = 2(2)-1
L]
L] LI
L1 =00 5= -5
L] []
The second equation:
RN
| 1 =000 (X)+ (@) = -7
[]
RN
U = 0o (2) + (-5) = 7
]
v
OO0 00O
00 = 004 7 =7
] ]

Working with Fractions

Systems of equations can contain fractions. When we solve for one un-
known and get a fraction, we substitute the answer in the second problem
in the same way as we did before:

e
2x+4y = 8 - 2x+4(y) = 8
2x+4[%j=8

2x+2x = 8

4x = 8

x =2
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We now return the x value (2) into the original equation and solve for y.

_1
y_ Zx
1
y = 5(2) (because x=2)
y=1

The answer is (2, 1)

Working with Negatives

When one of the equations has a negative number of y’s, we must be careful
to remember that -y means the opposite of y. For example:

0]

=

I
~
W
=
~

Il
N
|

Il

N
S
I
N
1]

=1 E—

We now have the value of x, so we can continue on in the usual way:

y = 3(x)
y =3(1) (because x="1)
y =73

The solution is (-1, -3)
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Notice that we substituted 3x for y, but that y was being subtracted, so the
3x was flipped to its opposite. When we check, we must also be careful;
since y is -3, we substitute -3 in for y but do not ignore the negative sign:

= ) = 3(x)

,,,,,, (-3) = 3(-1)

= - =2

_ (1)~ (-3) = 2

- 143 =2

Different Forms

For simplicity, we have been using examples where one equation is already

solved for y in terms of x. Systems may be in other forms where one

equation is solved for x or where neither equation is in the desired form.
For example, here is a system where the second equation is solved for x:

7
2y +3

2x — 3y

X

We can substitute from either equation at the beginning, so we choose the
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second equation; since it is solved for x, we substitute 2y + 3 in for x in the
tirst equation:

| O O™
| 1 = OO
2(x) -3y = 7 | i oo
@w=2+3 _—
—g | _
2y +3)-3y = 7 oo = - BO
[l;{giﬂmj l:l DDD
=l a0
dy+6-3y =7 0m % = O]
%D OO
y+6 =7 [ ] = %@D
-1 - - O
Continuing on to solve for x:
x =21y +3
x =2(1)+3 (because y=1)
x=5

The solution is (5, 1)

Changing the Form

If neither equation is solved for x or y, we use the technique from RULES AND
GRAPHS, Section 4. We pick one equation and rearrange the terms by adding
and multiplying both sides until we have the equation solved for either
x or y. For example, given the equations:

x+y =3

x-y =1
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Our first step is to solve one equation for y; choose x+y = 3:

O]

L0

1 = Ofd

We continue on by substituting for y in the same manner as before:

y = (x+3)
x= =1
x—(-x+3) =1
x+x-3 =1
2x-3 =1
2x = 4
x =2
y=—(x)+3
y="02)+3
y=1
The solution is (2, 1).

Here is a more difficult example:

2x+3y = 8
3x+3y =9

We solve the first equation for y:

2x+3y = 8
2x-2x +3y = 8-2x
3y = 8-2x
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We continue by substituting the expression for y in the second equation:

_(8 2
Yy=|373"

3x+3@y) =9
8 2
3x+3(§—§j=9
24 6
3x+?—§x=9
3x+8-2x =9
x+8 =9
x=1
_8 2
y=373"
8 2
y—3—3(1) (because x =1)
_8 2
¥Y=373
_6
¥=3
y=2

To begin, we can choose either equation and solve for either unknown. While
any choice will work eventually, it is best to “look ahead” to find the
equation that looks easiest to solve. To avoid fractions, you can try to pick
an equation where division isn’t required to solve for either x or y.

Summary: Substitution Method

If necessary, solve one equation for either unknown. If an equation
is already solved, use that one. We will call this the first equation.

e Substitute the expression for y or x in the second equation, leaving
this equation with only one unknown remaining.

e Solve this second equation for the one unknown.

e Put this value back into the first equation and solve for the other
unknown.

o Check the solution (x, y) by putting the values for x and y into both

equations and confirming that these values make true statements
in both equations.
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Exercises

Solve the following systems by substituting the expression for x

from the first equation into the second equation:

1. x=2y+5
2y+x =9
2. x=3-y
y=-3x=7
3. X =Yy+5
x+2y =8
4. x=6-y
y="2x+6

Solve the following systems by solving the first equation for y (if

necessary), and substituting the expression for y into the second

equation:
5. y=x+5
x+y =9
6. x+y=°-5
x+2y = 4
7. y=3-2x
3y—-2x =1
8. 2y = x+6
dx+y = 12

Solve the following systems by substitution:

9. xX+y =25
3x+2y =13

10. x+2y =5
x-3y = 10
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11.

12.

13.

14.

15.
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Section 4
The Addition Method

Adding Equations

Another method of solving systems of equations is to add the equations
together. If the equations are arranged properly, this can result in a quick
solution.

When we solve equations, we are able to add the same amount to both
sides. This works because we start with two equal expressions; if we make
the same changes to both sides of an equation, the expressions are still equal.

This idea will give us another method of solving a system of equations:

x-y =4
x+y =12

The second equation tells us that x + y is equal to 12. We start with the first
equation; instead of adding 12 to both sides, we add x + y to the left side and
12 to the right side. We call this process the addition method:

We added the two equations together and the iy’s canceled out, giving a new

| S/ =0000

| 7N -0000
0000 "
L - 0000 x

12

| | OooC 2
_0oog

16

| | OO0d
Oooo

equation with x’s and units only. We solve this in the usual way for x:

2x = 16

1 1

5 (20) = 2(16)
x =8
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To find the value of y, we put the value of x back into either of the original
equations; we then solve for y:

) +y =12
8+y =12
y=4

The answer is (8, 4).

Here is another example of a solving a system with the addition method:

2x+y =5
2x+2y = 14

We “add” the two equations together. This time, the x’s cancel out:

]
]
Xty =00 | ] Coood
2%  + 2y = 12 | || |_ DDDD
y = 9 1 OOoood
C_ 1 =0000
]

Remember that we are adding equal amounts to both sides of the equation,
because 2x +2y and 12 are equal. We finish the solution in the usual way:

3y =9

1 1
3Gy) = 30)

y=3
2x+2y = 14
2x+2(3) = 14
2x+6 = 14
2x = 8
x=4
The answer is (4, 3)
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Rewriting One Equation

The examples in this section have all worked out very neatly. When we
added the equations together, one of the unknowns canceled out, allowing
us to solve for the other unknown. This will not always happen.

In the system shown below, adding the equations together does not cancel
either variable. The resulting equation still has both variables and we cannot
solve it for either one:

2x + 3y = 4
X+ 2y = 5
b + 5y = 9

This difficulty can be overcome if we rewrite one of our original equa-
tions before we add the two equations together. If we multiply both sides of
the second equation by 2, it will then have a -2x term which will cancel the
2x term from the first equation:

2x+3y = 4 - — 2x +3y =4
X +2y = 55 2(-x+2y) = 2(5) »| 2x +4y=10

7y = 14

y =2

We changed our original equations so their x terms were opposites (equal
numbers and opposite signs). When we added the equations together, the x
terms canceled out, leaving only y terms and numbers. We could then solve
for y.

Here is another example:

2x + 3y = -1 - - 2x + 3y = -1
5+ y = 4 | 3bx+y) =-34)>| “15x- 3y =-12
-13x =-13

x =1

This time we multiplied to make the y terms cancel (same number of y’s
and opposite signs). Since both y terms were positive, we multiplied the
second equation by -3. This method works whenever the x’s in one equation
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are a multiple of the x’s in the other equation, or the y’s in one equation are
a multiple of the y’s in the other equation.
To finish the solution:

5x)+y =4
51)+y =4
y="1

Rewriting Both Equations

It is not always possible to multiply both sides of one equation and then
cancel out by adding. Consider the system below:

2x+3y = 8
3x+4y =11

We cannot multiply 2x by any number to cancel 3x and we cannot multiply
3y to cancel 4y. Instead we have to separately multiply both equations to
make them cancel:

2x+3y=-8 > 32x+3y)= 3(8) - 6x +9y=-24
3x + 4y =-11 —»| 2(3x + 4y) = -2(-11) -»| -6x — 8y =22

(Eliminate x. 6 is - -2
the common mul- Yy
tiple of 2 and 3.)

Did you notice that we multiplied one equation by 3 and the other
equation by -2? We must multiply both sides of each equation by the same number,
but we can multiply the two different equations by two different numbers. Our
object is to get the terms of one variable to be opposite in the two equations
so that they will cancel when the equations are added.

To do this, we must find the least common multiple of the original numbers
of x’s or y’s. In this example, we chose x, and the least common multiple of
2 and 3 is 6. We then must choose the multipliers so that one equation has a
+6x and the other equation has a -6x. To finish the solution:

2x+3(y) = 8
2x+3(2) =8
2x+76 =8
2x = 2
x="1

The solution is (-1, -2)
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Here is a more complex example:

dx+5y = 23
6x+7y = 33

The steps are as follows:

4x + 5y = 23 —| -3(4x + 5y) = -3(23) —»| -12x-15y=-69
6x + 7y = 33 —»| 2(6x+7y) = 2(33) —>| 12x +14y= 66

(Eliminate x. The
common multiple
of4and 6is 12.)

_y=_3
y=3

We finish the solution in the usual way:

4x +5(y) = 23
4x +5(3) = 23
4x+15 = 23
4x = 8
x =2

The solution is (2, 3)

The steps for adding equations are as follows:
e Choose a variable to eliminate.
¢ Find a common multiple of the numbers of x’s or ys.

e Multiply the original equations to give new equations where the
terms for the chosen variable are opposite.

¢ Add the equations together, letting the chosen variable cancel out.
e Solve for the remaining variable.

e Plug this solution back into the original equation and solve for the
remaining variable.

How Do We Multiply?

From the examples above, we can develop a plan for multiplying the
equations. Since our only tool is multiplication, we get multiples of the
original numbers of x and y. We are looking for a common multiple,
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preferably a least common multiple—familiar from the least common
denominator.

In the last example, we looked at 4x and 6x and found the least common
multiple of 4 and 6. This is 12. We then multiplied the equation containing
4x by -3, so 4x became -12x, and we multiplied the equation containing 6x
by 2, so that 6x became 12x.

How do we know whether we should cancel x or y? We simply pick the
one that looks easiest—usually the one where we will have less multiplying
to do (where the least common multiple is smaller). Here is a summary of
these ideas:

e If either x’s or y’s in both equations are ready to cancel, then no
multiplying is required.

e If thex’s (or y’s) in one equation are a multiple of the x’s (or y’s) in
the other equation, then multiply both sides of one equation only.
Remember to use a negative number when multiplying if neces-

sary.

e If the x’s (or y’s) in one equation are not a multiple of the x’s (or
y’s) in the other equation, then separately multiply both sides of
both equations to get a common multiple of one variable (x or y).
Use a negative number if necessary.

Changing the Form of the Equations

When equations are not given in the form we have been using, it is easy to
rearrange the terms. This is a slightly different process than solving an
equation for x or y. In this case, we are adding to both sides with a different
goal—to have the equation in standard form, as shown below:

_Xx+_y = _

For example, in the single equation below, we add to both sides until the x’s
and y’s are on one side (usually the left) and the units are on the other side
(usually the right):

3x+4 = y+7
3x+4-4=y+7-4
3x = y+3
3x-y=y-y+3
3x—-y =3

We are not solving for x or y. Our goal is to have the x and y terms on the left
side of the equation and the number term on the right side of the equation.
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A second example is shown below:

Ix+3y+4 =7x-2)+1
Ix+3y+4 =7x-14+1
9x+3y+4 =7x-13
9x+3y+4-4="7x-13-4
9x+3y = 7x-17
Ox+3y—-7x = 7x-7x—-17
2x +3y = -17

Notice that we need to multiply out parentheses but that we do not need to
divide at the end.

Here are the steps to get an equation into standard form:

Multiply out all parentheses.
Combine similar terms on both sides.

Decide how to get the equation into the form: _x+ _y = _
Choose the left side for the unknown and the right for the units.

Add to cancel the x’s and y’s on the right side.

Add to cancel the units on the left side.

Summary

We now have a complete addition method for solving systems of equations.
Here are the steps we have developed:

Rewrite each equation in the standard form by multiplying out
parentheses, combining terms, and arranging the unknowns on
one side.

If necessary, multiply one or both equations so that either the x’s
or the y’s will cancel.

Add the two equations. The chosen variable will cancel out.
Solve the resulting equation for the remaining variable.

Substitute that result back into either original equation and solve
for the other unknown.

Check by substituting x and y into both equations.
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Exercises

Solve the following systems by addition. Change the form if neces-

sary:
1. 2x+y