Appendix **4**Functions and Maps

Maps

We can illustrate a function with a **map**. A map is a diagram of the x's and y's with each x connected to its correct y. The connection is shown by an arrow to remind you that x is first and y is the answer. The rule determines which x goes to which y.

We can draw a map from a list of pairs, even if we do not know the rule:

Pairs are: (0, 92), (1, 12), (2, 22), and (-1, 26.1)

Here is a map of the function x^2 :

With some functions, different x's are mapped to the same y.

Maps that are Not Functions

Not all maps or lists of pairs are functions. By our previous definition, the rule had to give the same answer for x each time. In the game, this means that if 1 is given as x once or several times, the answer will always be the same. Each x can have only one y as an answer. We must understand, however, that the chart may have two x's which share the same y.

The following chart does *not* represent a function because 0 has two *different* answers:

\boldsymbol{x}	y
0	5
1	8
0	11
2	2

The corresponding map looks like this:

Cannot be a function

530 APPENDICES

Summary

Here is an illustration of what is *not a function*:

• A *table*, where an *x* has more than one *y*:

\boldsymbol{x}	y
0	5
1	8
2	11
1	17

These are *not* functions.

• A list of *ordered pairs*, where an *x* has more than one *y*:

• A *map*, where an *x* is paired with more than one *y*:

• A machine, where the rule is not the same every time:

+

Finish the tables:

1.
$$y = 3x^2$$

x	y
- 5	75
5	?
10	?
3	?
1	?
- 1	?
	•

2.
$$y = x + 2x + 1$$

\boldsymbol{x}	y
- 1	-2
0	1
1	?
3	?
2	?
- 5	?

3.
$$y = -x + x$$

x	y
6	0
-4	?
0	?
2	?
-3	?
17	?

Draw a map for each list of ordered pirs:

6.
$$(-3, 11), (6, \sqrt{17}), (\frac{3}{2}, 5)$$

Which of the following maps or charts are functions?

7.

8.

9.	x	=	$3y^2$
----	---	---	--------

x	y
75	-5
75	5
300	10
12	2
0	0
-1	?

x	y
1	17.5
0	17.5
1	17.5
3	17.5
2	17.5
5	17.5

11.

y
-6
4
3/2
6
5
5

